满分5 > 高中数学试题 >

已知向量=(sinx,-1),=(cosx,-),函数f(x)=(+)•-2 (...

已知向量manfen5.com 满分网=(sinx,-1),manfen5.com 满分网=(manfen5.com 满分网cosx,-manfen5.com 满分网),函数f(x)=(manfen5.com 满分网+manfen5.com 满分网)•manfen5.com 满分网-2
(1)求函数f(x)的最小正周期T及单调减区间;
(2)已知a,b,c分别为△ABC内角A,B,C的对边,其中A为锐角,a=2manfen5.com 满分网,c=4,且f(A)=1.求A,b和△ABC的面积.
(1)由已知利用向量的运算及数量积即可得到,进而得到f(x),利用正弦函数周期公式及其单调性即可得到函数f(x)的最小正周期T及单调减区间; (2)利用(1)即可得到A,再利用正弦定理即可得到C,利用三角形内角和定理即可得到B,利用直角三角形含30°角的性质即可得出边b,进而得到三角形的面积. 解析:(1)∵,, ∴()=•(sinx,-1) = = =+2, ∴=. ∴. 由, 解得. ∴单调递减区间是. (2)∵f(A)=1,∴, ∵A为锐角,∴,解得A=; 由正弦定理得, ∴==1,C∈(0,π),∴. ∴,∴=2. ∴.
复制答案
考点分析:
相关试题推荐
给出下列五个命题:
①已知直线a,b和平面α,若a∥b,b∥α,则a∥α;
②平面上到一个定点和一条定直线的距离相等的点的轨迹是一条抛物线;
③双曲线manfen5.com 满分网-manfen5.com 满分网=1(a>0,b>0),则直线y=manfen5.com 满分网x+m(m∈R)与双曲线有且只有一个公共点;
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直;
⑤过M(2,0)的直线l与椭圆manfen5.com 满分网+y2=1交于P1P2两点,线段P1P2中点为P,设直线l斜率为k1(k≠0),直线OP的斜率为k2,则k1k2等于-manfen5.com 满分网
其中,正确命题的序号为    查看答案
椭圆manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为    查看答案
已知在平面直角坐标系中,A(-2,0),B(1,3),O为原点,且manfen5.com 满分网,(其中α+β=1,α,β均为实数),若N(1,0),则manfen5.com 满分网的最小值是    查看答案
如图给出了一个程序框图,其作用是输入x的值,输出相应的y值.若要使输入的x值与输出的y值相等,则这样的x值有    个.
manfen5.com 满分网 查看答案
从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,则P(A)等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.