满分5 > 高中数学试题 >

如图,在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别在边CD,CB上...

如图,在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别在边CD,CB上,点E与点C,点D不重合,EF⊥AC,EF∩AC=O,沿EF将△CEF折起到△PEF的位置,使得平面PEF⊥平面ABFED
(1)求证:BD⊥平面POA
(2)设AO∩BD=H,当O为CH中点时,若点Q满足manfen5.com 满分网=manfen5.com 满分网,求直线OQ与平面PBD所成角的正弦值.
manfen5.com 满分网
(1)由菱形的性质可得BD⊥AO,再利用面面垂直的性质可得PO⊥平面ABFED,得到PO⊥BD,进而得到结论; (2)通过建立空间直角坐标系,利用斜线的方向向量和平面的法向量的夹角即可得出. (1)证明:在菱形ABCD中,∵BD⊥AC,∴BD⊥AO, ∵EF⊥AC,∴PO⊥EF. ∵平面PEF⊥平面ABFED,平面PEF∩平面ABFED=EF,且PO⊂平面PEF, ∴PO⊥平面ABFED, ∵BD⊂平面ABFED,∴PO⊥BD, ∵AO∩PO=O,∴BD⊥平面POA. (2)由(1)可知:AC⊥BD, ∵∠DAB=60°,BC=4,∴BH=2,CH=. ∵O为CH的中点,∴PO=. 如图,以O为坐标原点,建立空间直角坐标系O-xyz.则O(0,0,0),A, B,D,P. ∴,. 由,得Q为AP的中点. ∴.∴. 设平面PBD的法向量为, 则得,取x=1,得y=0,z=1. ∴. 设直线OQ与平面PBD所成的角为θ. 则===. 因此直线OQ与平面PBD所成的角的正弦值为.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,.∠ABC=60°,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=a,点M在线段EF上.
(1)求证:BC⊥平面ACFE;
(2)当EM为何值时,AM∥平面BDF?证明你的结论;
(3)求二面角B-EF-D的平面角的余弦值.
查看答案
如图甲,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.
(1)求证:DC⊥平面ABC;
(2)求BF与平面ABC所成角的正弦;
(3)求二面角B-EF-A的余弦.

manfen5.com 满分网 manfen5.com 满分网 查看答案
如图,已知四边形 ABCD 是矩形,AB=2BC=2,三角形 PAB 是正三角形,且 平面 ABCD⊥平面 PCD.
(1)若 O 是 CD 的中点,证明:BO⊥PA;
(2)求二面角 B-PA-D 的余弦值.

manfen5.com 满分网 查看答案
如图,在长方体ABCD一A1B1C1D1中,AA1=2,AD=3,E为CD中点,三棱 锥A1-AB1E的体积是6.
(1)设P是棱BB1的中点,证明:CP∥平面AEB1
(2)求AB的长;
(3)求二面角B-AB1-E的余弦值.

manfen5.com 满分网 查看答案
如图1,在直角梯形ABCD中,已知AD∥BC,AD=AB=1,∠BAD=90°,∠BCD=45°,AE⊥BD.将△ABD沿对角线BD折起(图2),记折起后点A的位置为P且使平面PBD⊥平面BCD.
(1)求三棱锥P-BCD的体积;
(2)求平面PBC与平面PCD所成二面角的平面角的大小.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.