考察函数f(x)=log2x-log3x,求导f′(x)=>0在x∈(0,+∞)恒成立,利用导数与单调性的关系得出f(x)=log2x-log3x在x∈(0,+∞)是增函数,从而判断A,B正确.再考察函数g(x)=2x-log2x,同理可得g(x)=2x-log2x,在x∈(2013,+∞)是增函数,从而得出C选项正确,D错误.
【解析】
考察函数f(x)=log2x-log3x,
由于f′(x)=>0在x∈(0,+∞)恒成立,
故f(x)=log2x-log3x在x∈(0,+∞)是增函数,
∴a>b>0,⇔log2a-log3a>log2b-log3b⇔log2a+log3b>log2b+log3a.
故A,B正确.
考察函数g(x)=2x-log2x,同理可得g(x)=2x-log2x,在x∈(2013,+∞)是增函数,
∴若a>b>2013,则,C选项正确,D错误.
故选D.