满分5 > 高中数学试题 >

已知椭圆C:的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为. (1...

已知椭圆C:manfen5.com 满分网的离心率为manfen5.com 满分网,椭圆短轴的一个端点与两个焦点构成的三角形的面积为manfen5.com 满分网
(1)求椭圆C的方程;
(2)已知动直线y=k(x+1)与椭圆C相交于A、B两点.
①若线段AB中点的横坐标为manfen5.com 满分网,求斜率k的值;
②已知点manfen5.com 满分网,求证:manfen5.com 满分网为定值.
(1)根据椭圆的离心率,三角形的面积及椭圆几何量之间的关系,建立等式,即可求得椭圆的标准方程; (2)①直线方程代入椭圆方程,利用韦达定理及线段AB中点的横坐标为,即可求斜率k的值; ②利用韦达定理,及向量的数量积公式,计算即可证得结论. (1)【解析】 因为满足a2=b2+c2,,…(2分) 根据椭圆短轴的一个端点与两个焦点构成的三角形的面积为,可得. 从而可解得, 所以椭圆方程为…(4分) (2)证明:①将y=k(x+1)代入中,消元得(1+3k2)x2+6k2x+3k2-5=0…(6分) △=36k4-4(3k2+1)(3k2-5)=48k2+20>0,…(7分) 因为AB中点的横坐标为,所以,解得…(9分) ②由①知, 所以…(11分) ==…(12分) ===…(14分)
复制答案
考点分析:
相关试题推荐
已知等差数列{an}的公差d≠0,它的前n项和为Sn,若S5=70,且a2,a7,a22成等比数列.
(1)求数列{an}的通项公式;
(2)设数列manfen5.com 满分网的前n项和为Tn,求证:manfen5.com 满分网
查看答案
如图所示四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD中,AB⊥AD,BC∥AD,PA=AB=BC=2,AD=4,E为PD的中点,F为PC中点.
(Ⅰ)求证:CD⊥平面PAC;
(Ⅱ)求证:BF∥平面ACE;
(Ⅲ)求直线PD与平面PAC所成的角的正弦值.

manfen5.com 满分网 查看答案
已知函数f(x)=sinx+cos(x-manfen5.com 满分网),x∈R.
(1)求f(x)的最大值;
(2)设△ABC中,角A、B的对边分别为a、b,若B=2A,且b=2af(A-manfen5.com 满分网),求角C的大小.
查看答案
某班学生中喜爱看综艺类节目的有18人,体育类节目的有27人,时政类节目的有9人,现采取分层抽样的方法从这些学生中抽取6名学生.
(I)求应从喜爱看综艺类节目、体育类节目、时政类节目的学生中抽取的人数;
(Ⅱ)若从抽取的6名学生中随机抽取2人分作一组,
(i)列出所有可能的分组结果:
(ii)求抽取的2人中有1人喜爱看综艺类节目1人喜爱看体育类节目的概率.
查看答案
已知manfen5.com 满分网1的展开式中的常数项为T,f(x)是以T为周期的偶函数,且当x∈[0,1]时,f(x)=x,若在区间[-1,3]内,函数g(x)=f(x)-kx-k有4个零点,则实数k的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.