满分5 > 高中数学试题 >

如图是一个空间几何体的正视图、侧视图、俯视图,如果正视图、侧视图所对应的三角形皆...

如图是一个空间几何体的正视图、侧视图、俯视图,如果正视图、侧视图所对应的三角形皆为边长为2的正三角形,俯视图对应的四边形为正方形,那么这个几何体的体积为( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
由题意知,空间几何体是底面边长为2,斜高为2的正四棱锥,由此能求出它的体积. 【解析】 ∵空间几何体的主视图、左视图所对应的三角形皆为边长为2的正三角形, 俯视图对应的四边形为正方形, ∴空间几何体是底面边长为2,斜高为2的正四棱锥, 它的高h=,它的底面积S=22=4, ∴它的体积V===. 故答案为 C.
复制答案
考点分析:
相关试题推荐
复数manfen5.com 满分网=( )
A.2i
B.-2i
C.2
D.-2
查看答案
设全集U={1,2,3,4,5},集合A={1,2},B={2,3},则A∩∁UB=( )
A.{4,5}
B.{2,3}
C.{1}
D.{2}
查看答案
已知函数f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12,直线m:y=kx+9,又f′(-1)=0.
(1)求函数f(x)=ax3+3x2-6ax-11在区间(-2,3)上的极值;
(2)是否存在k的值,使直线m既是曲线y=f(x)的切线,又是y=g(x)的切线;如果存在,求出k的值;如果不存在,说明理由;
(3)如果对于所有x≥-2的x,都有f(x)≤kx+9≤g(x)成立,求k的取值范围.
查看答案
已知椭圆C:manfen5.com 满分网的离心率为manfen5.com 满分网,椭圆短轴的一个端点与两个焦点构成的三角形的面积为manfen5.com 满分网
(1)求椭圆C的方程;
(2)已知动直线y=k(x+1)与椭圆C相交于A、B两点.
①若线段AB中点的横坐标为manfen5.com 满分网,求斜率k的值;
②已知点manfen5.com 满分网,求证:manfen5.com 满分网为定值.
查看答案
已知等差数列{an}的公差d≠0,它的前n项和为Sn,若S5=70,且a2,a7,a22成等比数列.
(1)求数列{an}的通项公式;
(2)设数列manfen5.com 满分网的前n项和为Tn,求证:manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.