满分5 > 高中数学试题 >

设∪=R,P={x|x2<1},Q={x|x≥0},则P∩(∁UQ)=( ) A...

设∪=R,P={x|x2<1},Q={x|x≥0},则P∩(∁UQ)=( )
A.{x|-1<x<0}
B.{x|x<0}
C.{x|x<-1}
D.{x|0<x<1}
求解二次不等式化简集合P,然后直接利用交集和补集的运算求解. 【解析】 由P={x|x2<1}={x|-1<x<1},Q={x|x≥0}, 所以∁UQ={x|x<0}, 所以P∩(∁UQ)={x|-1<x<1}∩{x|x<0}={x|-1<x<0}. 故选A.
复制答案
考点分析:
相关试题推荐
直线l与椭圆manfen5.com 满分网交于A(x1,y1),B(x2,y2)两点,已知manfen5.com 满分网=(ax1,by1),manfen5.com 满分网=(ax2,by2),若manfen5.com 满分网manfen5.com 满分网且椭圆的离心率manfen5.com 满分网,又椭圆经过点manfen5.com 满分网,O为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线l过椭圆的焦点F(0,c)(c为半焦距),求直线l的斜率k的值;
(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
查看答案
已知函数manfen5.com 满分网,x=2是f(x)的一个极值点.
(1)求函数f(x)的单调区间;
(2)若当x∈[1,+∞)时,manfen5.com 满分网恒成立,求a的取值范围.
查看答案
manfen5.com 满分网如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(I)求证:BC⊥平面ACFE;
(Ⅱ)点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.
查看答案
在一次数学考试中,第21题和第22题为选做题.规定每位考生必须且只须在其中选做一题.设4名考生选做每一道题的概率均为manfen5.com 满分网
(1)求其中甲、乙两名学生选做同一道题的概率;
(2)设这4名考生中选做第22题的学生个数为ξ,求ξ的概率分布及数学期望.
查看答案
已知数列{an}是公差为2的等差数列,且a1+1,a3+1,a7+1成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令manfen5.com 满分网,记数列{bn}的前n项和为Tn,求证:manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.