空气质量指数PM2.5(单位:μg/m
3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:
PM2.5 日均浓度 | 0~35 | 35~75 | 75~115 | 115~150 | 150~250 | >250 |
空气质量级别 | 一级 | 二级 | 三级 | 四级 | 五级 | 六级 |
空气质量类型 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
甲、乙两城市2013年2月份中的15天对空气质量指数PM2.5进行监测,获得PM2.5日均浓度指数数据如茎叶图所示:
(Ⅰ)根据你所学的统计知识估计甲、乙两城市15天内哪个城市空气质量总体较好?(注:不需说明理由)
(Ⅱ)在15天内任取1天,估计甲、乙两城市空气质量类别均为优或良的概率;
(Ⅲ)在乙城市15个监测数据中任取2个,设X为空气质量类别为优或良的天数,求X的分布列及数学期望.
考点分析:
相关试题推荐
如图,四棱锥P-ABCD的底面ABCD为菱形,∠ABC=60°,侧面PAB是边长为2的正三角形,侧面PAB⊥底面ABCD.
(Ⅰ)设AB的中点为Q,求证:PQ⊥平面ABCD;
(Ⅱ)求斜线PD与平面ABCD所成角的正弦值;
(Ⅲ)在侧棱PC上存在一点M,使得二面角M-BD-C的大小为60°,求
的值.
查看答案
已知f(x)=
sin2x-2sin
2x.
(Ⅰ)求f(x)的最小正周期和单调递增区间;
(Ⅱ)若
,求f(x)的最小值及取得最小值时对应的x的取值.
查看答案
以下是面点师一个工作环节的数学模型:如图,在数轴上截取与闭区间[0,4]对应的线段,对折后(坐标4所对应的点与原点重合)再均匀地拉成4个单位长度的线段,这一过程称为一次操作(例如在第一次操作完成后,原来的坐标1、3变成2,原来的坐标2变成4,等等).那么原闭区间[0,4]上(除两个端点外)的点,在第n次操作完成后(n≥1),恰好被拉到与4重合的点所对应的坐标为f(n),则f(3)=
;f(n)=
.
查看答案
如图所示,以直角三角形ABC的直角边AC为直径作⊙O,交斜边AB于点D,过点D作⊙O的切线,交BC边于点E.则
=
.
查看答案
在△ABC中,a,b,c依次是角A,B,C的对边,且b<c.若
,则角C=
.
查看答案