(1)由题设条件,令n=1,得a2=,a2-a1-1=--1=-,再由bn=an+1-an-1,bn+1=an+2-an+1-1,得到==.所以bn}是等比数列.
(2)由an+1-an-1=-×,知a2-a1-1=-×,a3-a2-1=-×,an-an-1-1=-×,将以上各式相加得到数列{an}的通项.
【解析】
(1)证明:a1=,2an+1=an+n,
∵a2=,a2-a1-1=--1=-,
又bn=an+1-an-1,bn+1=an+2-an+1-1,
∴=
===.
bn=-×()n-1=-×,
∴{bn}是以-为首项,以为公比的等比数列.
(2)∵an+1-an-1=-×,
∴a2-a1-1=-×,
a3-a2-1=-×,
∴an-an-1-1=-×,
将以上各式相加得:
∴an-a1-(n-1)=-(+++),
∴an=a1+n-1-×
=+(n-1)-(1-)=+n-2.
∴an=+n-2.