满分5 > 高中数学试题 >

已知离心率为的椭圆的中心在原点,焦点在x轴上,双曲线以椭圆的长轴为实轴,短轴为虚...

已知离心率为manfen5.com 满分网的椭圆的中心在原点,焦点在x轴上,双曲线以椭圆的长轴为实轴,短轴为虚轴,且焦距为2manfen5.com 满分网
(I)求椭圆及双曲线的方程;
(Ⅱ)设椭圆的左、右顶点分别为A,B,在第二象限内取双曲线上一点P,连结BP交椭圆于点M,连结PA并延长交椭圆于点N,若manfen5.com 满分网=manfen5.com 满分网.求四边形ANBM的面积.

manfen5.com 满分网
(Ⅰ)设出椭圆方程和双曲线方程,由椭圆的离心率是,双曲线的焦距为2联立方程组求出a和b的值,则椭圆及双曲线的方程可求; (Ⅱ)由(Ⅰ)中求出的椭圆方程求出A和B的坐标,设出M点的坐标,由得M为BP的中点,从而求出P点坐标,把M的坐标代入椭圆方程,把P的坐标代入双曲线方程,联立后求出M和P的具体值,然后把四边形ANBM的面积转化为三角形ANB的面积求解. 【解析】 (I)设椭圆方程为(a>b>0). 则根据题意,双曲线的方程为 ,且满足 ,解方程组得 ∴椭圆的方程为,双曲线的方程; (Ⅱ)由(I)得A(-5,0),B(5,0),|AB|=10. 设M(x,y),则由得M为BP的中点,所以P点坐标为(2x-5,2y), 将M、P坐标代入椭圆和双曲线方程,得 , 消去y,得 解之得或x=5(舍) 所以,由此可得, 所以. 当P为时,直线PA的方程是 即. 代入,得2x2+15x+25=0 所以或-5(舍), 所以,xN=xM,MN⊥x轴. 所以.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x3+ax2+bx.
(1)若函数y=f(x)在x=2处有极值-6,求y=f(x)的单调递减区间;
(2)若y=f(x)的导数f′(x)对x∈[-1,1]都有f′(x)≤2,求manfen5.com 满分网的范围.
查看答案
班级联欢时,主持人拟出了如下一些节目:跳双人舞、独唱、朗诵等,指定3个男生和2个女生来参与,把5个人分别编号为1,2,3,4,5,其中1,2,3号是男生,4,5号是女生,将每个人的号分别写在5张相同的卡片上,并放入一个箱子中充分混合,每次从中随机地取出一张卡片,取出谁的编号谁就参与表演节目.
(I)为了选出2人来表演双人舞,连续抽取2张卡片,求取出的2人不全是男生的概率;
(Ⅱ)为了选出2人分别表演独唱和朗诵,抽取并观察第一张卡片后,又放回箱子中,充分混合后再从中抽取第二张卡片,求:独唱和朗诵由同一个人表演的概率.
查看答案
manfen5.com 满分网已知四棱锥P-ABCD的三视图如图.
(1)求四棱锥P-ABCD的体积;
(2)若E是侧棱PC的中点,求证:PA∥平面BDE;
(3)若E是侧棱PC上的动点,不论点E在何位置,是否都有BD⊥AE?证明你的结论.
查看答案
已知数列{an}的各项均为正数,Sn为其前n项和,对于任意的n∈N*,满足关系式2Sn=3an-3.
(I)求数列{an}的通项公式;
(Ⅱ)设数列{bn}的通项公式是manfen5.com 满分网,前n项和为Tn,求证:对于任意的正整数n,总有Tn<1.
查看答案
在△ABC中,角A、B、C的对边分别为a、b、c,且满足(2a-c)cosB=bcosC.
(Ⅰ)求角B的大小;
(Ⅱ)设manfen5.com 满分网,求manfen5.com 满分网的最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.