用列举法表示A,从集合A中任选三个不同的元素a,b,c,共有 种方法,用列举法求得满足a+b+c=0的(a,b,c )有6个,由此求得能够满足a+b+c=0的集合M的概率.
【解析】
∵已知集合A={x|x2-x-12≤0,x∈Z}={x|(x-4)(x+3)≤0,x∈Z }={-3,-2,-1,0,1,2,3,4},
从集合A中任选三个不同的元素a,b,c,所有的(a,b,c )共有=56种方法,这里(a,b,c )无排列顺序.
而满足a+b+c=0的(a,b,c )有 (-3,0,3)、(-2,0,2)、(-1,0,1)、(-1,-2,3)、
(-1,-3,4)、(-3,1,2),共6个,
故能够满足a+b+c=0的集合M的概率为 =,
故答案为 .