满分5 > 高中数学试题 >

如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,A...

如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,AB⊥AC,M、N分别是
CC1、BC的中点,点P在A1B1上,且满足manfen5.com 满分网manfen5.com 满分网(λ∈R).
(1)证明:PN⊥AM;
(2)当λ取何值时,直线PN与平面ABC所成的角θ最大?并求该最大角的正切值;
(3)若平面PMN与平面ABC所成的二面角为45°,试确定点P的位置.

manfen5.com 满分网
(1)以AB,AC,AA1分别为x,y,z轴,建立空间直角坐标系A-xyz,求出各点的坐标及对应向量的坐标,易判断=0,即PN⊥AM; (2)设出平面ABC的一个法向量,我们易表达出sinθ,然后利用正弦函数的单调性及正切函数的单调性的关系,求出满足条件的λ值,进而求出此时θ的正线值; (3)平面PMN与平面ABC所成的二面角为45°,则平面PMN与平面ABC法向量的夹角为45°,代入向量夹角公式,可以构造一个关于λ的方程,解方程即可求出对应λ值,进而确定出满足条件的点P的位置. 【解析】 (1)证明:如图,以AB,AC,AA1分别为x,y,z轴,建立空间直角坐标系A-xyz. 则P(λ,0,1),N(,,0),M(0,1,),(2分) 从而=(-λ,,-1),=(0,1,), =(-λ)×0+×1-1×=0, 所以PN⊥AM.(3分) (2)平面ABC的一个法向量为=(0,0,1), 则sinθ=|sin(-<,>)|=|cos<,>| =||=(※).(5分) 而θ∈[0,],当θ最大时,sinθ最大,tanθ最大,θ=除外, 由(※)式,当λ=时,(sinθ)max=,(tanθ)max=2.(6分) (3)平面ABC的一个法向量为==(0,0,1). 设平面PMN的一个法向量为=(x,y,z), 由(1)得=(λ,-1,). 由 解得 ∵平面PMN与平面ABC所成的二面角为45°, ∴|cos<,>|=||==, 解得λ=-.(11分) 故点P在B1A1的延长线上,且|A1P|=.(12分)
复制答案
考点分析:
相关试题推荐
某车间在两天内,每天生产10件某产品,其中第一天、第二天分别生产了1件、2件次品,而质检部每天要在生产的10件产品中随意抽取4件进行检查,若发现有次品,则当天的产品不能通过.
(I)求两天全部通过检查的概率;
(Ⅱ)若厂内对该车间生产的产品质量采用奖惩制度,两天全不通过检查罚300元,通过1天,2天分别奖300元、900元.那么该车间在这两天内得到奖金的数学期望是多少元?
查看答案
manfen5.com 满分网等比数列.
(1)求manfen5.com 满分网的值;(2)若accosB=12,求a+c的值.
查看答案
有以下四个命题:
①若x,y∈R,i为虚数单位,且(x-2)i-y=-1+i,则(1+i)x+y的值为-4;
②将函数f(x)=cos(2x+manfen5.com 满分网)+1的图象向左平移manfen5.com 满分网个单位后,对应的函数是偶函数;
③若直线ax+by=4与圆x2+y2=4没有交点,则过点(a,b)的直线与椭圆manfen5.com 满分网=1有两个交点;
④在做回归分析时,残差图中残差点分布的带状区域的宽度越窄相关指数越小.
其中所有正确命题的序号为    查看答案
定义运算法则如下:manfen5.com 满分网manfen5.com 满分网
manfen5.com 满分网manfen5.com 满分网=    查看答案
设双曲线mx2+ny2=1的一个焦点与抛物线manfen5.com 满分网的焦点相同,离心率为2,则此双曲线的渐近线方程为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.