满分5 > 高中数学试题 >

设数列{an}的各项都是正数,且对任意n∈N+,都有a13+a23+a33+…+...

设数列{an}的各项都是正数,且对任意n∈N+,都有a13+a23+a33+…+an3=Sn2,其中Sn为数列{an}的前n项和.
(Ⅰ)求证:an2=2Sn-an
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设bn=3n+(-1)n-1λ•2an(λ为非零整数,n∈N*)试确定λ的值,使得对任意n∈N*,都有bn+1>bn成立.
(Ⅰ)令n=1代入a13+a23+a33+…+an3=Sn2,可得a1的值,然后推出Sn-12的表达式,与Sn2相减可得an2=2Sn-an,从而求证; (Ⅱ)由(Ⅰ)得an2=2Sn-an利用递推公式,得an-12的表达式,从而可得数列an是首项为1,公差为1的等差数列. (Ⅲ)第一步要求出bn+1-bn的表达式,然后再进行分类讨论,n为奇偶的情况确定λ的范围; 【解析】 (Ⅰ)由已知得,当n=1时,a13=S12=a12, 又∵an>0,∴a1=1 当n≥2时,a13+a23++an3=Sn2① a13+a23++an-13=Sn-12② 由①-②得,an3=Sn2-Sn-12=(Sn-Sn-1)(Sn+Sn-1)=an(Sn+Sn-1) ∴an2=Sn+Sn-1=2Sn-an(n≥2) 显然当n=1时,a1=1适合上式. 故an2=2Sn-an(n∈N*) (Ⅱ)由(I)得,an2=2Sn-an③ an-12=2Sn-1-an-1(n≥2)④ 由③-④得,an2-an-12=2Sn-2Sn-1-an+an-1=an+an-1 ∵an+an-1>0∴an-an-1=1(n≥2) 故数列an是首项为1,公差为1的等差数列. ∴an=n(n∈N*) (III)∵an=n(n∈N*),∴bn=3n+(-1)n-1λ•2n ∴bn+1-bn=3n+1-3n+(-1)nλ•2n+1-(-1)n-1λ•2n=2×3n-3λ•(-1)n-1•2n 要使bn-1>bn恒成立,只须(-1)n-1 λ<n-1 (1)当n为奇数时,即λ<恒成立, 又的最小值为1,∴λ<1 (2)当为偶数时,即λ>恒成立, 又-的最大值为-, ∴λ>-,∴由(1)(2)得-<λ<1, 又λ=0且为整数,∴λ=-1对所有n∈N+,都有bn+1>bn成立.
复制答案
考点分析:
相关试题推荐
A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为manfen5.com 满分网,服用B有效的概率为manfen5.com 满分网
(Ⅰ)求一个试验组为甲类组的概率;
(Ⅱ)观察3个试验组,用ξ表示这3个试验组中甲类组的个数,求ξ的分布列和数学期望.
查看答案
一个多面体的三视图及直观图如图所示:
(Ⅰ)求异面直线AB1与DD1所成角的余弦值:
(Ⅱ)试在平面ADD1A1中确定一个点F,使得FB1⊥平面BCC1B1
(Ⅲ)在(Ⅱ)的条件下,求二面角F-CC1-B的余弦值.
manfen5.com 满分网
查看答案
已知函数f(x)=(2x2-kx+k)•e-x
(1)当k为何值时,f(x)无极值;
(2)试确定实数k的值,使f(x)的极小值为0.
查看答案
在△ABC中,a、b、c分别为角A、B、C的对边,若manfen5.com 满分网=(sin2manfen5.com 满分网,1),manfen5.com 满分网=(cos2A+manfen5.com 满分网,4),且manfen5.com 满分网manfen5.com 满分网
(Ⅰ)求角A;
(Ⅱ)当a=manfen5.com 满分网,S△ABC=manfen5.com 满分网时,求边长b和角B的大小.
查看答案
请阅读下列材料:若两个正实数a1,a2满足a12+a22=1,那么a1+a2manfen5.com 满分网.证明:构造函数f(x)=(x-a12+(x-a22=2x2-2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以△≤0,从而得4(a1+a22-8≤0,所以a1+a2manfen5.com 满分网.根据上述证明方法,若n个正实数满足a12+a22+…+an2=1时,你能得到的结论为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.