登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
设数列{an}的各项都是正数,且对任意n∈N+,都有a13+a23+a33+…+...
设数列{a
n
}的各项都是正数,且对任意n∈N
+
,都有a
1
3
+a
2
3
+a
3
3
+…+a
n
3
=S
n
2
,其中S
n
为数列{a
n
}的前n项和.
(Ⅰ)求证:a
n
2
=2S
n
-a
n
;
(Ⅱ)求数列{a
n
}的通项公式;
(Ⅲ)设b
n
=3
n
+(-1)
n-1
λ•2
a
n
(λ为非零整数,n∈N
*
)试确定λ的值,使得对任意n∈N
*
,都有b
n+1
>b
n
成立.
(Ⅰ)令n=1代入a13+a23+a33+…+an3=Sn2,可得a1的值,然后推出Sn-12的表达式,与Sn2相减可得an2=2Sn-an,从而求证; (Ⅱ)由(Ⅰ)得an2=2Sn-an利用递推公式,得an-12的表达式,从而可得数列an是首项为1,公差为1的等差数列. (Ⅲ)第一步要求出bn+1-bn的表达式,然后再进行分类讨论,n为奇偶的情况确定λ的范围; 【解析】 (Ⅰ)由已知得,当n=1时,a13=S12=a12, 又∵an>0,∴a1=1 当n≥2时,a13+a23++an3=Sn2① a13+a23++an-13=Sn-12② 由①-②得,an3=Sn2-Sn-12=(Sn-Sn-1)(Sn+Sn-1)=an(Sn+Sn-1) ∴an2=Sn+Sn-1=2Sn-an(n≥2) 显然当n=1时,a1=1适合上式. 故an2=2Sn-an(n∈N*) (Ⅱ)由(I)得,an2=2Sn-an③ an-12=2Sn-1-an-1(n≥2)④ 由③-④得,an2-an-12=2Sn-2Sn-1-an+an-1=an+an-1 ∵an+an-1>0∴an-an-1=1(n≥2) 故数列an是首项为1,公差为1的等差数列. ∴an=n(n∈N*) (III)∵an=n(n∈N*),∴bn=3n+(-1)n-1λ•2n ∴bn+1-bn=3n+1-3n+(-1)nλ•2n+1-(-1)n-1λ•2n=2×3n-3λ•(-1)n-1•2n 要使bn-1>bn恒成立,只须(-1)n-1 λ<n-1 (1)当n为奇数时,即λ<恒成立, 又的最小值为1,∴λ<1 (2)当为偶数时,即λ>恒成立, 又-的最大值为-, ∴λ>-,∴由(1)(2)得-<λ<1, 又λ=0且为整数,∴λ=-1对所有n∈N+,都有bn+1>bn成立.
复制答案
考点分析:
相关试题推荐
A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为
,服用B有效的概率为
.
(Ⅰ)求一个试验组为甲类组的概率;
(Ⅱ)观察3个试验组,用ξ表示这3个试验组中甲类组的个数,求ξ的分布列和数学期望.
查看答案
一个多面体的三视图及直观图如图所示:
(Ⅰ)求异面直线AB
1
与DD
1
所成角的余弦值:
(Ⅱ)试在平面ADD
1
A
1
中确定一个点F,使得FB
1
⊥平面BCC
1
B
1
;
(Ⅲ)在(Ⅱ)的条件下,求二面角F-CC
1
-B的余弦值.
查看答案
已知函数f(x)=(2x
2
-kx+k)•e
-x
.
(1)当k为何值时,f(x)无极值;
(2)试确定实数k的值,使f(x)的极小值为0.
查看答案
在△ABC中,a、b、c分别为角A、B、C的对边,若
=(sin
2
,1),
=(cos2A+
,4),且
∥
.
(Ⅰ)求角A;
(Ⅱ)当a=
,S
△ABC
=
时,求边长b和角B的大小.
查看答案
请阅读下列材料:若两个正实数a
1
,a
2
满足a
1
2
+a
2
2
=1,那么a
1
+a
2
.证明:构造函数f(x)=(x-a
1
)
2
+(x-a
2
)
2
=2x
2
-2(a
1
+a
2
)x+1,因为对一切实数x,恒有f(x)≥0,所以△≤0,从而得4(a
1
+a
2
)
2
-8≤0,所以a
1
+a
2
.根据上述证明方法,若n个正实数满足a
1
2
+a
2
2
+…+a
n
2
=1时,你能得到的结论为
.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.