满分5 > 高中数学试题 >

已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a...

已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=anlogmanfen5.com 满分网an,Sn=b1+b2+b3+…+bn,对任意正整数n,Sn+(n+m)an+1<0恒成立,试求m的取值范围.
(1)设等比数列{an}的首项为a1,公比为q,根据2(a3+2)=a2+a4,可求得a3.进而求得a2+a4=20.两式联立方程即可求得a1和q的值,最后根据等比数列的通项公式求得an. (2)把(1)中的an代入bn,再利用错位相减法求得Sn,再由Sn+(n+m)an+1<0恒成立进而求得m的范围. 【解析】 (1)设等比数列{an}的首项为a1,公比为q. 依题意, 有2(a3+2)=a2+a4, 代入a2+a3+a4=28, 得a3=8. ∴a2+a4=20. ∴ 解之得,或 又{an}单调递增, ∴q=2,a1=2,∴an=2n, (2)bn=2n•log2n=-n•2n, ∴-Sn=1×2+2×22+3×23++n×2n① -2Sn=1×22+2×23++(n-1)2n+n•2n+1② ①-②得,Sn=2+22+23++2n-n•2n+1 =-n•2n+1 =2n+1-2-n•2n+1 由Sn+(n+m)an+1<0, 即2n+1-2-n•2n+1+n•2n+1+m•2n+1<0对任意正整数n恒成立, ∴m•2n+1<2-2n+1. 对任意正整数n, m<-1恒成立. ∵-1>-1,∴m≤-1. 即m的取值范围是(-∞,-1].
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.
(Ⅰ)估计这次测试数学成绩的平均分;
(Ⅱ)假设在[90,100]段的学生的数学成绩都不相同,且都在94分以上,现用简单随机抽样的方法,从95,96,97,98,99,100这6个数中任取2个数,求这两个数恰好是在[90,100]段的两个学生的数学成绩的概率.
查看答案
manfen5.com 满分网如图:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=manfen5.com 满分网,点F是PB的中点,点E在边BC上移动.
(Ⅰ)求三棱锥E-PAD的体积;
(Ⅱ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(Ⅲ)证明:无论点E在边BC的何处,都有PE⊥AF.
查看答案
已知△ABC中,manfen5.com 满分网,∠ABC=120°,∠BAC=θ,记f(θ)=manfen5.com 满分网
(I)求f(θ)关于θ的表达式;
(II)求f(θ)的值域.

manfen5.com 满分网 查看答案
下面四个命题:
①把函数y=3sin(2x+manfen5.com 满分网)的图象向右平移manfen5.com 满分网个单位,得到y=3sin2x的图象;
②函数f(x)=ax2-lnx的图象在x=1处的切线平行于直线y=x,则(manfen5.com 满分网)是f(x)的单调递增区间;
③正方体的内切球与其外接球的表面积之比为1:3;
④“a=2”是“直线ax+2y=0平行于直线x+y=1”的充分不必要条件.
其中所有正确命题的序号为    查看答案
已知A、B是抛物线x2=4y上的两点,线段AB的中点为M(2,2),则|AB|等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.