满分5 > 高中数学试题 >

已知函数g(x)=,f(x)=g(x)-ax. (1)求函数g(x)的单调区间;...

已知函数g(x)=manfen5.com 满分网,f(x)=g(x)-ax.
(1)求函数g(x)的单调区间;
(2)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;
(3)若存在x1,x2∈[e,e2],使f(x1)≤f(x2)+a,求实数a的取值范围.
(1)根据解析式求出g(x)的定义域和g′(x),再求出临界点,求出g′(x)<0和g′(x)>0对应的解集,再表示成区间的形式,即所求的单调区间; (2)先求出f(x)的定义域和f′(x),把条件转化为f′(x)≤0在(1,+∞)上恒成立,再对f′(x)进行配方,求出在x∈(1,+∞)的最大值,再令f′(x)max≤0求解; (3)先把条件等价于“当x∈[e,e2]时,有f(x)min≤f′(x)max+a”,由(2)得f′(x)max,并把它代入进行整理,再求f′(x)在[e,e2]上的最小值,结合(2)求出的a的范围对a进行讨论:和,分别求出f′(x)在[e,e2]上的单调性,再求出最小值或值域,代入不等式再与a的范围进行比较. (1)【解析】 由得,x>0且x≠1, 则函数g(x)的定义域为(0,1)∪(1,+∞), 且g′(x)=,令g′(x)=0,即lnx-1=0,解得x=e, 当0<x<e且x≠1时,g′(x)<0;当x>e时,g′(x)>0, ∴函数g(x)的减区间是(0,1),(1,e),增区间是(e,+∞), (2)由题意得函数f(x)=在(1,+∞)上是减函数, ∴f′(x)=-a≤0在(1,+∞)上恒成立, 即当x∈(1,+∞)时,f′(x)max≤0即可, 又∵f′(x)=-a==, ∴当时,即x=e2时,. ∴,得,故a的最小值为. (3)命题“若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立”等价于 “当x∈[e,e2]时,有f(x)min≤f′(x)max+a”, 由(2)得,当x∈[e,e2]时,,则, 故问题等价于:“当x∈[e,e2]时,有”, 当时,由(2)得,f(x)在[e,e2]上为减函数, 则,故, 当时,由于f′(x)=在[e,e2]上为增函数, 故f′(x)的值域为[f′(e),f′(e2)],即[-a,]. (i)若-a≥0,即a≤0,f′(x)≥0在[e,e2]恒成立,故f(x)在[e,e2]上为增函数, 于是,,不合题意. (ii)若-a<0,即0<,由f′(x)的单调性和值域知, 存在唯一x∈(e,e2),使f′(x)=0,且满足: 当x∈(e,x)时,f′(x)<0,f(x)为减函数;当x∈(x,e2)时,f′(x)<0,f(x)为增函数; 所以,f(x)min=f(x)=≤,x∈(e,e2), 所以,a≥,与0<矛盾,不合题意. 综上,得.
复制答案
考点分析:
相关试题推荐
已知长方形ABCD,AB=2manfen5.com 满分网.以AB的中点O为原点建立如图所示的平面直角坐标系xOy.
(I)求以A,B为焦点,且过C,D两点的椭圆P的标准方程;
(Ⅱ)已知定点E(-1,0),直线y=kx+t与椭圆P交于M、N相异两点,证明:对作意的t>0,都存在实数k,使得以线段MN为直径的圆过E点.

manfen5.com 满分网 查看答案
若数列{bn}:对于n∈N*,都有bn+2-bn=d(常数),则称数列{bn}是公差为d的准等差数列.如:若cn=manfen5.com 满分网是公差为8的准等差数列.
(I)设数列{an}满足:a1=a,对于n∈N*,都有an+an+1=2n.求证:{an}为准等差数列,并求其通项公式:
(Ⅱ)设(I)中的数列{an}的前n项和为Sn,试研究:是否存在实数a,使得数列Sn有连续的两项都等于50.若存在,请求出a的值;若不存在,请说明理由.
查看答案
manfen5.com 满分网如图,四边形PDCE为矩形,四边形ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=manfen5.com 满分网CD=a,PD=manfen5.com 满分网a.
(1)若M为PA中点,求证:AC∥平面MDE;
(2)求平面PAD与PBC所成锐二面角的大小.
查看答案
某工厂生产甲,乙两种芯片,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品.现随机抽取这两种芯片各100件进行检测,检测结果统计如下:
测试指标[70,76)[76,82)[82,88)[88,94)[94,100]
芯片甲81240328
芯片乙71840296
(I)试分别估计芯片甲,芯片乙为合格品的概率;
(Ⅱ)生产一件芯片甲,若是合格品可盈利40元,若是次品则亏损5元;生产一件芯片乙,若是合格品可盈利50元,若是次品则亏损10元.在(I)的前提下,
(i)记X为生产1件芯片甲和1件芯片乙所得的总利润,求随机变量X的分布列和数学期望;
(ii)求生产5件芯片乙所获得的利润不少于140元的概率.
查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,若向量manfen5.com 满分网=(-cosB,sinC),manfen5.com 满分网=(-cosC,-sinB),且manfen5.com 满分网
(Ⅰ)求角A的大小;
(Ⅱ)若b+c=4,△ABC的面积manfen5.com 满分网,求a的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.