满分5 > 高中数学试题 >

的值是( ) A.1 B.-1 C.i D.-i

manfen5.com 满分网的值是( )
A.1
B.-1
C.i
D.-i
先将括号里面的式子化简.然后直接利用i的幂运算求解即可. 【解析】 因为===-i, 所以=(-i)2011=-i3=i 故选C
复制答案
考点分析:
相关试题推荐
已知集合M={x|x2<4},N={x|x2-2x-3<0},则集合M∩N等于( )
A.{x|x<-2}
B.{x|x>3}
C.{x|-1<x<2}
D.{x|2<x<3}
查看答案
已知函数g(x)=manfen5.com 满分网,f(x)=g(x)-ax.
(1)求函数g(x)的单调区间;
(2)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;
(3)若存在x1,x2∈[e,e2],使f(x1)≤f(x2)+a,求实数a的取值范围.
查看答案
已知长方形ABCD,AB=2manfen5.com 满分网.以AB的中点O为原点建立如图所示的平面直角坐标系xOy.
(I)求以A,B为焦点,且过C,D两点的椭圆P的标准方程;
(Ⅱ)已知定点E(-1,0),直线y=kx+t与椭圆P交于M、N相异两点,证明:对作意的t>0,都存在实数k,使得以线段MN为直径的圆过E点.

manfen5.com 满分网 查看答案
若数列{bn}:对于n∈N*,都有bn+2-bn=d(常数),则称数列{bn}是公差为d的准等差数列.如:若cn=manfen5.com 满分网是公差为8的准等差数列.
(I)设数列{an}满足:a1=a,对于n∈N*,都有an+an+1=2n.求证:{an}为准等差数列,并求其通项公式:
(Ⅱ)设(I)中的数列{an}的前n项和为Sn,试研究:是否存在实数a,使得数列Sn有连续的两项都等于50.若存在,请求出a的值;若不存在,请说明理由.
查看答案
manfen5.com 满分网如图,四边形PDCE为矩形,四边形ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=manfen5.com 满分网CD=a,PD=manfen5.com 满分网a.
(1)若M为PA中点,求证:AC∥平面MDE;
(2)求平面PAD与PBC所成锐二面角的大小.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.