满分5 > 高中数学试题 >

已知函数f(x)=x2-1与函数g(x)=alnx(a≠0). (I)若f(x)...

已知函数f(x)=x2-1与函数g(x)=alnx(a≠0).
(I)若f(x),g(x)的图象在点(1,0)处有公共的切线,求实数a的值;
(II)设F(x)=f(x)-2g(x),求函数F(x)的极值.
(I)先判定点(1,0)与函数f(x),g(x)的图象的位置关系,然后分别求出在x=1处的导数,根据函数f(x),g(x)的图象在点(1,0)处有公共的切线,建立等量关系,求出a的值; (II)先求出F(x)的解析式和定义域,然后在定义域内研究F(x)的导函数,讨论a的正负,分别判定F'(x)=0的值附近的导数符号,确定极值. 【解析】 (I)因为f(1)=0,g(1)=0, 所以点(1,0)同时在函数f(x),g(x)的图象上(1分) 因为f(x)=x2-1,g(x)=alnx,f'(x)=2x,(3分)(5分) 由已知,得f'(1)=g'(1),所以,即a=2(6分) (II)因为F(x)=f(x)-2g(x)=x2-1-2alnx(x>0)(7分) 所以(8分) 当a<0时,因为x>0,且x2-a>0,所以F'(x)>0对x>0恒成立, 所以F(x)在(0,+∞)上单调递增,F(x)无极值(10分) 当a>0时,令F'(x)=0,解得(舍)(11分) 所以当x>0时,F'(x),F(x)的变化情况如下表: (13分) 所以当时,F(x)取得极小值,且.(14分) 综上,当a<0时,函数F(x)在(0,+∞)上无极值; 当a>0时,函数F(x)在处取得极小值a-1-alna.
复制答案
考点分析:
相关试题推荐
(文)已知集合A={0,1,2,3,4},a∈A,b∈A;
(1)求y=ax2+bx+1为一次函数的概率;
(2)求y=ax2+bx+1为二次函数的概率.
查看答案
某种植企业同时培育甲、乙两个品种杉树幼苗,甲品种杉树幼苗培育成功则每株利润80元,培育失败,则每株亏损20元;乙品种杉树幼苗培育成功则每株获利润150元,培育失败,则每株亏损50元.统计数据表明:甲品种杉树幼苗培育成功率为90%,乙品种杉树幼苗培育成功率为80%.假设每株幼苗是否培育成功相互独立.
(I)求培育3株甲品种杉树幼苗成功2株的概率;
(II)记ξ为培育1株甲品种杉树幼苗与1株乙品种杉树幼苗可获得的总利润,求ξ的分布列及其期望.
查看答案
如图,已知菱形ABCD的边长为6,∠BAD=60°,AC∩BD=O.将菱形ABCD沿对角线AC折起,使manfen5.com 满分网,得到三棱锥B-ACD.
(Ⅰ)若点M是棱BC的中点,求证:OM∥平面ABD;
(Ⅱ)求二面角A-BD-O的余弦值;
(Ⅲ)设点N是线段BD上一个动点,试确定N点的位置,使得manfen5.com 满分网,并证明你的结论.manfen5.com 满分网
查看答案
已知向量manfen5.com 满分网=(sinx,1+cos2x),manfen5.com 满分网=(sinx-cosx,cos2x+manfen5.com 满分网),定义函数f(x)=manfen5.com 满分网•(manfen5.com 满分网-manfen5.com 满分网
(Ⅰ)求函数f(x)最小正周期;
(Ⅱ)在△ABC中,角A为锐角,且manfen5.com 满分网,求边AC的长.
查看答案
(理)二项式(x3+manfen5.com 满分网n的展开式中,只有第6项的系数最大,则该展开式中的常数项为   
(文)已知x>0,y>0,x+y=1,求lgx+lgy的最大值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.