满分5 > 高中数学试题 >

如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明: (Ⅰ)∠AC...

manfen5.com 满分网如图:manfen5.com 满分网已知圆上的弧manfen5.com 满分网,过C点的圆的切线与BA的延长线交于E点,证明:
(Ⅰ)∠ACE=∠BCD.
(Ⅱ)BC2=BE×CD.

manfen5.com 满分网
(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论. (II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可. 【解析】 (Ⅰ)因为, 所以∠BCD=∠ABC. 又因为EC与圆相切于点C, 故∠ACE=∠ABC 所以∠ACE=∠BCD.(5分) (Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD, 所以△BDC~△ECB, 故. 即BC2=BE×CD.(10分)
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网的离心率manfen5.com 满分网.直线x=t(t>0)与曲线E交于
不同的两点M,N,以线段MN为直径作圆C,圆心为C.
(1)求椭圆E的方程;
(2)若圆C与y轴相交于不同的两点A,B,求△ABC的面积的最大值.
查看答案
已知函数f(x)=x2-1与函数g(x)=alnx(a≠0).
(I)若f(x),g(x)的图象在点(1,0)处有公共的切线,求实数a的值;
(II)设F(x)=f(x)-2g(x),求函数F(x)的极值.
查看答案
(文)已知集合A={0,1,2,3,4},a∈A,b∈A;
(1)求y=ax2+bx+1为一次函数的概率;
(2)求y=ax2+bx+1为二次函数的概率.
查看答案
某种植企业同时培育甲、乙两个品种杉树幼苗,甲品种杉树幼苗培育成功则每株利润80元,培育失败,则每株亏损20元;乙品种杉树幼苗培育成功则每株获利润150元,培育失败,则每株亏损50元.统计数据表明:甲品种杉树幼苗培育成功率为90%,乙品种杉树幼苗培育成功率为80%.假设每株幼苗是否培育成功相互独立.
(I)求培育3株甲品种杉树幼苗成功2株的概率;
(II)记ξ为培育1株甲品种杉树幼苗与1株乙品种杉树幼苗可获得的总利润,求ξ的分布列及其期望.
查看答案
如图,已知菱形ABCD的边长为6,∠BAD=60°,AC∩BD=O.将菱形ABCD沿对角线AC折起,使manfen5.com 满分网,得到三棱锥B-ACD.
(Ⅰ)若点M是棱BC的中点,求证:OM∥平面ABD;
(Ⅱ)求二面角A-BD-O的余弦值;
(Ⅲ)设点N是线段BD上一个动点,试确定N点的位置,使得manfen5.com 满分网,并证明你的结论.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.