满分5 > 高中数学试题 >

已知椭圆过点(0,1),且离心率为. (Ⅰ)求椭圆C的方程; (Ⅱ)A,B为椭圆...

已知椭圆manfen5.com 满分网过点(0,1),且离心率为manfen5.com 满分网
(Ⅰ)求椭圆C的方程;
(Ⅱ)A,B为椭圆C的左右顶点,直线manfen5.com 满分网与x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,|DE|•|DF|恒为定值.
(Ⅰ)由题意可知:b=1,因为e=,且a2=b2+c2,可得a的值,进而求出椭圆的方程. (Ⅱ)由题意可得:A(-2,0),B(2,0).设P(x,y),由题意可得:-2<x<2,分别写出直线AP与直线BP的方程,再求出E、F两点的纵坐标,即可求出|DE|•|DF|的表达式,然后利用点P在椭圆上即可得到|DE|•|DF|为定值1. 【解析】 (Ⅰ)由题意可知,b=1, 又因为e=,且a2=b2+c2, 解得a=2, 所以椭圆的方程为. (Ⅱ)由题意可得:A(-2,0),B(2,0).设P(x,y),由题意可得:-2<x<2, 所以直线AP的方程为,令,则, 即; 同理:直线BP的方程为,令,则, 即; 所以= 而,即4y2=4-x2,代入上式, 所以|DE|•|DF|=1, 所以|DE|•|DF|为定值1.
复制答案
考点分析:
相关试题推荐
如图1,已知几何体的下部是一个底面为正六边形、侧面全为矩形的棱柱,上部是一个侧面全为等腰三角形的棱锥,图2是该几何体的主视图.
(1)求该几何体的体积;
(2)证明:DF1平面PA1F1

manfen5.com 满分网 查看答案
为提高广东中小学生的健康素质和体能水平,广东省教育厅要求广东各级各类中小学每年都要在体育教学中实施“体能素质测试”,测试总成绩满分为100分.根据广东省标准,体能素质测试成绩在[85,100]之间为优秀;在[75,85)之间为良好;在[65,75)之间为合格;在(0,60)之间,体能素质为不合格.
现从佛山市某校高一年级的900名学生中随机抽取30名学生的测试成绩如下:
65,84,76,70,56,81,87,83,91,75,81,88,80,82,93,85,90,77,86,81,83,82,82,64,79,86,68,71,89,96.
(1)在答题卷上完成频率分布表和频率分布直方图,并估计该校高一年级体能素质为优秀的学生人数;
(2)现用分层抽样的方法在该校高一年级共900名学生中抽取6名学生,在上述抽取的6名学生中任取2名,求恰好抽到1名体能素质为优秀的学生的概率;
(3)请你依据所给数据和上述广东省标准,对该校高一学生的体能素质给出一个简短评价.
查看答案
已知平面直角坐标系上的三点A(0,1)、B(-2,0)、C(cosθ,sinθ)(θ∈(0,π)),且manfen5.com 满分网manfen5.com 满分网共线.
(1)求tanθ;
(2)求sin(manfen5.com 满分网)的值.
查看答案
(几何证明选讲)如图,已知PA是圆O的切线,切点为A,直线PO交圆O于B,C两点,AC=2,∠PAB=120°,则圆O的面积为______

manfen5.com 满分网 查看答案
(坐标系与参数方程)已知⊙O的方程为manfen5.com 满分网(θ为参数),则⊙O上的点到直线manfen5.com 满分网(t为参数)的距离的最大值为______
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.