满分5 > 高中数学试题 >

(附加题-必做题) 四棱锥P-ABCD的底面ABCD是正方形,侧棱PD⊥底面AB...

manfen5.com 满分网(附加题-必做题)
四棱锥P-ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(I)证明PA∥平面BDE;
(Ⅱ)求二面角B-DE-C的平面角的余弦值;
(Ⅲ)在棱PB上是否存在点F,使PB⊥平面DEF?若存在,请求出F点的位置;若不存在,请说明理由.
(1)建立空间直角坐标系,根据直线所在的向量与平面的法向量相互垂直,并且直线不在平面内可得直线与平面平行. (2)分别求出两个平面的法向量,利用向量的有关运算计算出两个向量的夹角,进而得到二面角平面角的余弦值. (3)假设存在点F,则直线PB所在的向量与平面DEF的法向量平行,根据这个条件可得到一个方程,再根据有关知识判断方程的解的情况. 【解析】 (1)以D为坐标原点,分别以DA、DC、DP所在直线为x轴、y轴、z轴建立空间直角坐标系, 设PD=CD=2,则A(2,0,0),P(0,0,2),E(0,1,1),B(2,2,0), 所以=(2,0,-2),=(0,1,1),=(2,2,0). 设=(x,y,z)是平面BDE的一个法向量, 则由,得; 取=-1,则=(1,-1,1), ∵•=2-2=0, ∴⊥,又PA⊄平面BDE, ∴PA∥平面BDE. (2)由(1)知=(1,-1,1)是平面BDE的一个法向量,又==(2,0,0)是平面DEC的一个法向量. 设二面角B-DE-C的平面角为θ,由图可知θ=<,>, ∴cosθ=cos<,>===, 故二面角B-DE-C余弦值为. (3)∵=(2,2,-2),=(0,1,1), ∴•=0+2-2=0,∴PB⊥DE. 假设棱PB上存在点F,使PB⊥平面DEF,设=λ(0<λ<1), 则=(2λ,2λ,-2λ),=+=(2λ,2λ,2-2λ), 由•=0得4λ2+4λ2-2λ(2-2λ)=0, ∴λ=∈(0,1),此时PF=PB, 即在棱PB上存在点F,PF=PB,使得PB⊥平面DEF.
复制答案
考点分析:
相关试题推荐
某电子科技公司遇到一个技术性难题,决定成立甲、乙两个攻关小组,按要求各自独立进行为期一个月的技术攻关,同时决定对攻关限期内攻克技术难题的小组给予奖励.已知此技术难题在攻关期限内被甲小组攻克的概率为manfen5.com 满分网,被乙小组攻克的概率为manfen5.com 满分网
(1)设ξ为攻关期满时获奖的攻关小组数,求ξ的分布列及数学期望Eξ;
(2)设η为攻关期满时获奖的攻关小组数与没有获奖的攻关小组数之差的平方,记“函数manfen5.com 满分网在定义域内单调递增”为事件C,求事件C发生的概率.
查看答案
在△ABC中,角A,B,C所对应的边分别为a,b,c,且满足manfen5.com 满分网
(I)求角A的度数;
(Ⅱ)求manfen5.com 满分网的取值范围.
查看答案
已知函数f(x)=manfen5.com 满分网,若方程f(x)+x+a=0有两个大于零的实数根,则实数a的取值范围是    查看答案
反复抛掷一个质地均匀的正方体骰子,依次记录每一次落地时骰子向上的点数,当记有三个不同点数时即停止抛掷.若抛掷四次恰好停止,则记有这四次点数的所有不同结果的种数为    .(用数字作答) 查看答案
观察下列等式:
(1+x+x21=1+x+x2
(1+x+x22=1+2x+3x2+2x3+x4
(1+x+x23=1+3x+6x2+7x3+6x4+3x5+x6
(1+x+x24=1+4x+10x2+16x3+19x4+16x5+10x6+4x7+x8,…
由以上等式推测:对于n∈N*,若(1+x+x2n=a+a1x+a2x2+…+a2nx2n则a2=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.