满分5 > 高中数学试题 >

如图1,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=AP=2,D为...

如图1,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=manfen5.com 满分网AP=2,D为AP的中点,E,F,G分别为PC、PD、CB的中点,将△PCD沿CD折起,使点P在平面ABCD上的射影为点D,如图2.
(I)求证:AP∥平面EFG;
(Ⅱ)求三棱锥P-ABC的体积.

manfen5.com 满分网
(I)利用三角形的中位线定理、平行线的传递性、平行四边形的判定定理、线面平行的判定定理等即可得出; (II))由已知点P在平面ABCD上的射影为点D,可得PD⊥平面ABCD.即PD是三棱锥P-ABC的高.利用三棱锥P-ABC的体积V=即可得出. (I)证明:取AD的中点H,连接FH、GH. ∵E,F,G分别为PC、PD、CB的中点,∴EF∥CD,CGDH, ∴四边形CDHG是平行四边形,∴CD∥GH. ∴EF∥GH.∴四点EFHG四点共面. 又FH∥PA. PA⊄平面EFGH,FH⊂平面EFGH. ∴PA∥平面EFGH. (II)【解析】 ∵点P在平面ABCD上的射影为点D,∴PD⊥平面ABCD. 即PD是三棱锥P-ABC的高. 而=2. ∴三棱锥P-ABC的体积V==.
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和Sn,对一切正整数n,点(n,Sn)都在函数f(x)=2x+2-4的图象上.
(I)求数列{an}的通项公式;
(Ⅱ)设bn=an•log2an,求数列{bn}的前n项和Tn
查看答案
某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:
积极参加班级工作不太主动参加班级工作合计
学习积极性高18725
学习积极性一般61925
合计242650
(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(2)试运用独立性检验的思想方法点拨:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由.(参考下表)
manfen5.com 满分网
查看答案
在△ABC中,a、b、c分别是A、B、C的对边.若向量manfen5.com 满分网=(2,0)与manfen5.com 满分网=(sinB,1-cosB)所成角为manfen5.com 满分网
(I)求角B的大小;
(Ⅱ)若b=manfen5.com 满分网,求a+c的最大值.
查看答案
对于函数f(x)=manfen5.com 满分网,给出下列四个命题:
①该函数是以π为最小正周期的周期函数;
②当且仅当x=π+kπ(k∈Z)时,该函数取得最小值-1;
③该函数的图象关于x=manfen5.com 满分网+2kπ(k∈Z)对称;
④当且仅当2kπ<x<manfen5.com 满分网+2kπ(k∈Z)时,0<f(x)≤manfen5.com 满分网
其中正确命题的序号是    .(请将所有正确命题的序号都填上) 查看答案
在样本的频率分布直方图中,共有4个小长方形,这4个小方形的面积由小到大构成等差数列{an},已知a2=2a1,且样本容量为400,则小长方形面积最大的一组的频数为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.