满分5 > 高中数学试题 >

已知椭圆的左、右焦点分别为F1、F2,离心率,右准线方程为x=2. (1)求椭圆...

已知椭圆manfen5.com 满分网的左、右焦点分别为F1、F2,离心率manfen5.com 满分网,右准线方程为x=2.
(1)求椭圆的标准方程;
(2)过点F1的直线l与该椭圆交于M、N两点,且manfen5.com 满分网,求直线l的方程.
(1)由已知得,解得,由此能得到所求椭圆的方程. (2)由题意知F1(-1,0)、F2(1,0),①若直线l的斜率不存在, 则直线l的方程为x=-1,由得 设、,,这与已知相矛盾. ②若直线l的斜率存在,设直线直线l的斜率为k,则直线l的方程为y=k(x+1),设M(x1,y1)、N(x2,y2),联立,消元得(1+2k2)x2+4k2x+2k2-2=0.再由根与系数的关系进行求解. 【解析】 (1)由已知得, 解得 ∴∴所求椭圆的方程为 ( 2)由(1)得F1(-1,0)、F2(1,0) ①若直线l的斜率不存在,则直线l的方程为x=-1, 由得 设、, ∴,这与已知相矛盾. ②若直线l的斜率存在,设直线直线l的斜率为k,则直线l的方程为y=k(x+1), 设M(x1,y1)、N(x2,y2), 联立,消元得(1+2k2)x2+4k2x+2k2-2=0 ∴, ∴. 又∵ ∴ ∴ 化简得40k4-23k2-17=0 解得k2=1或k2=(舍去) ∴k=±1 ∴所求直线l的方程为y=x+1或y=-x-1
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和为Sn,a1=1,且nan+1=2Sn(n∈N*).
(I)证明数列manfen5.com 满分网是等比数列,并求数列{an}的通项公式;
(II)数列{bn}满足manfen5.com 满分网manfen5.com 满分网,对任意n∈N*,都有manfen5.com 满分网.若对任意的n∈N*,不等式2n+1bnsn<3×2n+1bn+λn(n+2)恒成立,试求实数λ的取值范围.
查看答案
manfen5.com 满分网对某新开张超市一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示).
(Ⅰ)求样本的中位数和极差;
(Ⅱ)若每天的经营情况分盈利,亏本两种(以顾客数45人为界,45人以上为盈利,否则亏本),则连续4天的经营情况包含多少种基本事件?若4天中至少2天盈利,超市才能在市场中得以生存,求新超市存在的概率?(用分数作答)
查看答案
三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC.
(Ⅰ)证明:平面PAB⊥平面PBC;
(Ⅱ)若PA=manfen5.com 满分网,PC=3,PB与底面ABC成60°角,求三棱锥P-ABC的体积.

manfen5.com 满分网 查看答案
在△ABC中,a,b,c分别为角A、B、C的对边,若manfen5.com 满分网=(manfen5.com 满分网,1),manfen5.com 满分网=(-2,cos2A+1),且manfen5.com 满分网
(Ⅰ)求角A的度数;
(Ⅱ)当a=2manfen5.com 满分网,且△ABC的面积S=manfen5.com 满分网时,求边c的值和△ABC的面积.
查看答案
定义在R上的函数f(x),如果存在函数g(x)=kx+b(k,b为常数),使得f(x)≥g(x)对一切实数x都成立,则称g(x)为函数f(x)的一个“承托函数”.现有如下命题:
①g(x)=2x为函数f(x)=2x的一个承托函数;
②若g(x)=kx-1为函数f(x)=xlnx的一个承托函数,则实数k的取值范围是[1,+∞);
③定义域和值域都是R的函数f(x)不存在承托函数;
④对给定的函数f(x),其承托函数可能不存在,也可能有无数个.
其中正确的命题是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.