满分5 > 高中数学试题 >

设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC...

设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=manfen5.com 满分网
(I) 求△ABC的周长;
(II)求cos(A-C)的值.
(I)利用余弦定理表示出c的平方,把a,b及cosC的值代入求出c的值,从而求出三角形ABC的周长; (II)根据cosC的值,利用同角三角函数间的基本关系求出sinC的值,然后由a,c及sinC的值,利用正弦定理即可求出sinA的值,根据大边对大角,由a小于c得到A小于C,即A为锐角,则根据sinA的值利用同角三角函数间的基本关系求出cosA的值,然后利用两角差的余弦函数公式化简所求的式子,把各自的值代入即可求出值. 【解析】 (I)∵c2=a2+b2-2abcosC=1+4-4×=4, ∴c=2, ∴△ABC的周长为a+b+c=1+2+2=5. (II)∵cosC=,∴sinC===. ∴sinA===. ∵a<c,∴A<C,故A为锐角.则cosA==, ∴cos(A-C)=cosAcosC+sinAsinC=×+×=.
复制答案
考点分析:
相关试题推荐
设f(x)=x3+ax2+bx+1的导函数f′(x)满足f′(1)=2a,f′(2)=-b,其中常数a,b∈R,则曲线y=f(x)在点(1,f(1))处的切线方程为    查看答案
在△ABC中,A=60°,BC=manfen5.com 满分网,D是AB边上的一点,且BD=2,CD=manfen5.com 满分网,则AC的长为    查看答案
若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为manfen5.com 满分网,则α和β的夹角θ的范围是    查看答案
manfen5.com 满分网执行程序框图,若p=4,则输出的S=    查看答案
已知正四棱锥S-ABCD中,SA=2manfen5.com 满分网,那么当该棱锥的体积最大时,它的高为( )
A.1
B.manfen5.com 满分网
C.2
D.3
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.