设弦的两端点分别为A(x1,y1),B(x2,y2),由AB的中点是P(8,1),知x1+x2=16,y1+y2=2,利用点差法能求出这条弦所在的直线方程.
【解析】
设弦的两端点分别为A(x1,y1),B(x2,y2),
∵AB的中点是P(8,1),∴x1+x2=16,y1+y2=2,
把A(x1,y1),B(x2,y2)代入双曲线x2-4y2=4,
得,
∴(x1+x2)(x1-x2)-4(y1-y2)(y1+y2)=0,
∴16(x1-x2)-8(y1-y2)=0,
∴k==2,
∴这条弦所在的直线方程是2x-y-15=0.
故答案为:2x-y-15=0.