在极坐标系中,圆的圆心极坐标为 .
已知实数满足约束条件,则的最小值是 .
已知 ().
(1)当时,判断在定义域上的单调性;
(2)若在上的最小值为,求的值;
(3)若在上恒成立,试求的取值范围.
已知二次函数的图象经过坐标原点,其导函数为,数列的前项和为,点均在函数的图像上.
(1)求的解析式;
(2)求数列的通项公式;
(3)设,是数列的前n项和,求使得对所有都成立的最小正整数.
(1)已知命题和命题,若是的必要不充分条件,求实数的取值范围.
(2)已知命题方程的一根在内,另一根在内.
命题函数的定义域为全体实数.
若为真命题,求实数的取值范围.
某年某省有万多文科考生参加高考,除去成绩为分(含分)以上的人与成绩为分(不含分)以下的人,还有约万文科考生的成绩集中在内,其成绩的频率分布如下表所示:
分数段 |
||||
频率 |
0.108 |
0.133 |
0.161 |
0.183 |
分数段 |
||||
频率 |
0.193 |
0.154 |
0.061 |
0.007 |
(1)请估计该次高考成绩在内文科考生的平均分(精确到);
(2)考生A填报志愿后,得知另外有4名同分数考生也填报了该志愿.若该志愿计划录取2人,并在同分数考生中随机录取,求考生A被该志愿录取的概率.
(参考数据:610×0.061+570×0.154+530×0.193+490×0.183+450×0.161+410×0.133=443.93)