如图,在四棱锥中,侧面底面,,为中点,底面是直角梯形,,,,.
(1) 求证:平面;
(2) 求证:平面平面;
(3) 设为棱上一点,,试确定的值使得二面角为.
为了解甲、乙两厂产品的质量,从两厂生产的产品中分别随机抽取各10件样品,测量产品中某种元素的含量(单位:毫克).如图是测量数据的茎叶图:
规定:当产品中的此种元素含量不小于18毫克时,该产品为优等品.
(1)试用上述样本数据估计甲、乙两厂生产的优等品率;
(2)从乙厂抽出的上述10件样品中,随机抽取3件,求抽到的3件样品中优等品数的分布列及其数学期望;
(3)从甲厂的10件样品中有放回的随机抽取3件,也从乙厂的10件样品中有放回的随机抽取3件,求抽到的优等品数甲厂恰比乙厂多2件的概率.
在中,角的对边分别为向量,,且.
(1)求的值;
(2)若,,求角的大小及向量在方向上的投影.
如图,是⊙的直径,是延长线上的一点,过作⊙的切线,切点为,,若,则⊙的直径__________ .
已知极坐标的极点与平面直角坐标系的原点重合,极轴与轴的正半轴重合,且长度单位相同.圆的参数方程为为参数),点的极坐标为(,).若点是圆上的任意一点,两点间距离的最小值为 .
在区间上随机取一个数,使得成立的概率为 .