已知,点在曲线上, (Ⅰ)(Ⅰ)求数列的通项公式;
(Ⅱ)设数列的前n项和为,若对于任意的,使得恒成立,求最小正整数t的值.
如图,在四棱锥中,底面是矩形,底面,是的中点,已知,,,
求:(Ⅰ)三角形的面积;(II)三棱锥的体积
已知函数,若的最大值为1.
(1)求的值,并求的单调递增区间;
(2)在中,角、、的对边、、,若,且,试判断三角形的形状.
某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:每一组;第二组,……,第五组.右图是按上述分组方法得到的频率分布直方图.
(I)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(II)设、表示该班某两位同学的百米测试成绩,且已知,求事件“”的概率.
已知实数、满足,则的最小值是 .
定义在上的函数满足.若当时.,则当时,= .