已知函数().
(1)若的定义域和值域均是,求实数的值;
(2)若对任意的,,总有,求实数的取值范围.
在中,,则的取值范围是________.
已知集合,则实数a的取值范围是___________.
已知各项都为正数的等比数列{an}中,a2·a4=4,a1+a2+a3=14,则满足an·an+1·an+2>的最大正整数n的值为________.
已知幂函数的图象与x轴,y轴无交点且关于原点对称,又有函数f(x)=x2-alnx+m-2在(1,2]上是增函数,g(x)=x-在(0,1)上为减函数.
①求a的值;
②若,数列{an}满足a1=1,an+1=p(an),(n∈N+),数列{bn},满足,,求数列{an}的通项公式an和sn.
③设,试比较[h(x)]n+2与h(xn)+2n的大小(n∈N+),并说明理由.
已知二次函数h(x)=ax2+bx+c(其中c<3),其导函数的图象如图,f(x)=6lnx+h(x).
①求f(x)在x=3处的切线斜率;
②若f(x)在区间(m,m+)上是单调函数,求实数m的取值范围;
③若对任意k∈[-1,1],函数y=kx(x∈(0,6])的图象总在函数y=f(x)图象的上方,求c的取值范围.