如图,
为圆
的直径,
为垂直于
的一条弦,垂足为
,弦
与
交于点
.

(Ⅰ)证明:
四点共圆;
(Ⅱ)证明:
.
已知函数
.
(Ⅰ)讨论
的单调性;
(Ⅱ)若
恒成立,证明:当
时,
.
已知点
是椭圆
:![]()
上一点,
分别为
的左右焦点
,
,
的面积为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
,过点
作直线
,交椭圆
异于
的
两点,直线
的斜率分别为
,证明:
为定值.
在如图所示的几何体中,四边形
均为全等的直角梯形,且
,
.

(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的余弦值.
从某校高三上学期期末数学考试成绩中,随机抽取了60名学生的成绩得到频率分布直方图如下:

(Ⅰ)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;
(Ⅱ)以上述样本的频率作为概率,从该校高三学生中有放回地抽取3人,记抽取的学生成绩不低于90分的人数为
,求
的分布列和期望.
在
中,角
所对的边分别是
,已知
.
(Ⅰ)求
;
(Ⅱ)若
,且
,求
的面积.
