已知数列
的各项均为正数,
为其前
项和,对于任意的
,满足关系式![]()
(1)求数列
的通项公式;
(2)设数列
的通项公式是
,前
项和为
,求证:对于任意的正整数
,总有
.
已知
其中
是自然对数的底 .
(1)若
在
处取得极值,求
的值;
(2)求
的单调区间;
在
中,![]()
(1)求角B的大小;
(2)求
的取值范围.
设函数
.
(Ⅰ)解不等式
;
(Ⅱ)若不等式
的解集为
,求实数
的取值范围.
极坐标系与直角坐标系
有相同的长度单位,以原点
为极点,以
轴正半轴为极轴.已知直线
的参数方程为
(
为参数),曲线
的极坐标方程为
.
(Ⅰ)求
的直角坐标方程;
(Ⅱ)设直线
与曲线
交于
两点,求弦长
.
