【解析】
(1)用赋值法求得;(2)因为是抽象函数,所以必须用单调性定义来证明;(3)将4化为函数值的形式,利用函数的单调性定义解不等式.
【解析】
(1)由f(0+0)=f(0)+f(0)-1,得f(0)=1(3分)
(2)任取x1,x2∈R,且x2<x1(4分)
由题意,有f(x2)=f(x2-x1+x1)=f(x1)+f(x2-x1)-1(6分)
∵x2-x1<0
∴f(x2-x1)<1(7分)
∴f(x2)<f(x1)(8分)
∴f(x)在R上为增函数(9分)
(3)∵f(2+2)=f(2)+f(2)-1
∴f(2)=4(10分)
又∵f(x)在R上递增
∴x2+x<2(11分)
∴不等式解集为{x|-2<x<1}(12分)