(1)先根据正弦定理用正弦表示出边,然后代入到已知条件中,再由两角和与差的公式整理可得到cosB的值,最后可得角B的值.
(2)根据余弦定理将代入求出ac的值,再由三角形的面积公式可求得结果.
【解析】
(I)在△ABC中,由正弦定理得:
a=2RsinA,b=2RsinB,c=2RsinC代入(2a-c)cosB=bcosC整理得:
2sinAcosB=sinBcosC+sinCcosB
即:2sinAcosB=sin(B+C)=sinA,在三角形中,sinA>0,2cosB=1,
∵∠B是三角形的内角,∴B=60°.
(II)在△ABC中,由余弦定理得:
b2=a2+c2-2ac•cosB=(a+c)2-2ac-2ac•cosB
ac=3
故.