满分5 > 高中数学试题 >

已知函数,g(x)=lnx. (Ⅰ)如果函数y=f(x)在[1,+∞)上是单调增...

已知函数manfen5.com 满分网,g(x)=lnx.
(Ⅰ)如果函数y=f(x)在[1,+∞)上是单调增函数,求a的取值范围;
(Ⅱ)是否存在实数a>0,使得方程manfen5.com 满分网在区间manfen5.com 满分网内有且只有两个不相等的实数根?若存在,请求出a的取值范围;若不存在,请说明理由.
(1)由于函数的解析式中含有参数a,故我们要对a进行分类讨论,注意到a出现在二次项系数的位置,故可以分a>0,a=0,a<0三种情况,最后将三种情况得到的结论综合即可得到答案. (2)方程整理为ax2+(1-2a)x-lnx=0构造函数H(x)=ax2+(1-2a)x-lnx(x>0),则原方程在区间内有且只有两个不相等的实数根即为函数H(x)在区间()内有且只有两个零点,根据函数零点存在定理,结合函数的单调性,构造不等式组,解不等式组即可得到结论. 【解析】 (Ⅰ)当a=0时,f(x)=2x在[1,+∞)上是单调增函数,符合题意. 当a>0时,y=f(x)的对称轴方程为, 由于y=f(x)在[1,+∞)上是单调增函数, 所以,解得a≤-2或a>0,所以a>0. 当a<0时,不符合题意. 综上,a的取值范围是a≥0. (Ⅱ)把方程整理为 , 即为方程ax2+(1-2a)x-lnx=0. 设H(x)=ax2+(1-2a)x-lnx(x>0), 原方程在区间()内有且只有两个不相等的实数根, 即为函数H(x)在区间()内有且只有两个零点 = 令H′(x)=0,因为a>0,解得x=1或(舍) 当x∈(0,1)时,H′(x)<0,H(x)是减函数; 当x∈(1,+∞)时,H′(x)>0,H(x)是增函数. H(x)在()内有且只有两个不相等的零点, 只需 即 ∴ 解得, 所以a的取值范围是().
复制答案
考点分析:
相关试题推荐
将直径为d的圆木锯成长方体横梁,横截面为矩形,横梁的强度同它的断面高的平方与宽x的积成正比(强度系数为k,k>0).要将直径为d的圆木锯成强度最大的横梁,断面的宽x应是多少?

manfen5.com 满分网 查看答案
某品牌专卖店准备在春节期间举行促销活动,根据市场调查,该店决定从2种型号的洗衣机,2种型号的电视机和3种型号的电脑中,选出3种型号的商品进行促销.
(Ⅰ)试求选出的3种型号的商品中至少有一种是电脑的概率;
(Ⅱ)该店对选出的商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高150元,同时,若顾客购买该商品,则允许有3次抽奖的机会,若中奖,则每次中奖都获得m元奖金.假设顾客每次抽奖时获奖与否的概率都是manfen5.com 满分网,设顾客在三次抽奖中所获得的奖金总额(单位:元)为随机变量X,请写出X的分布列,并求X的数学期望;
(Ⅲ)在(Ⅱ)的条件下,问该店若想采用此促销方案获利,则每次中奖奖金要低于多少元?
查看答案
如图,四棱锥P-ABCD的底面为正方形,侧棱PA⊥底面ABCD,且PA=AD=2,E,F,H分别是线段PA,PD,AB的中点.
(Ⅰ)求证:PB∥平面EFH;
(Ⅱ)求证:PD⊥平面AHF;
(Ⅲ)求二面角H-EF-A的大小.

manfen5.com 满分网 查看答案
已知数列an,其前n项和为manfen5.com 满分网
(Ⅰ)求数列an的通项公式,并证明数列an是等差数列;
(Ⅱ)如果数列bn满足an=log2bn,请证明数列bn是等比数列,并求其前n项和;
(Ⅲ)设manfen5.com 满分网,数列{cn}的前n项和为Tn,求使不等式Tnmanfen5.com 满分网对一切n∈N*都成立的最大正整数k的值.
查看答案
已知函数f(x)=cos2x-sin2x+2sinxcosx.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)当manfen5.com 满分网时,求函数f(x)的最大值,并写出x相应的取值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.