满分5 > 高中数学试题 >

函数f(x)=x•ex的最小值是( ) A.-1 B. C. D.e

函数f(x)=x•ex的最小值是( )
A.-1
B.manfen5.com 满分网
C.manfen5.com 满分网
D.e
要求函数的最小值,需要求出导函数并令其等于零得到驻点x=-1,然后分区间x<-1和x>-1,讨论函数的增减性来判断函数的极值,得到函数的最小值即可. 【解析】 ∵f′(x)=ex+xex 令f′(x)=0得 ex+xex=0 ex(1+x)=0 解得:x=-1 当x<-1时,f′(x)<0,函数f(x)是减函数 当x=-1时,f′(x)=0,函数f(x)=- 当x>-1时,f′(x)>0,函数f(x)是增函数 ∴当x=-1时,函数f(x)有极小值且为最小值 故答案为B.
复制答案
考点分析:
相关试题推荐
如图,在空间直角坐标系中,正方体棱长为2,点E是棱AB的中点,点F(0,y,z)是正方体的面AA1D1D上点,且CF⊥B1E,则点F(0,y,z)满足方程( )
manfen5.com 满分网
A.y-z=0
B.2y-z-1=0
C.2y-z-2=0
D.z-1=0
查看答案
函数manfen5.com 满分网( )(e是自然对数的底数)
A.在(0,e)上是减函数
B.在(0,+∞)上是增函数
C.在(e,+∞)上是减函数
D.在(0,+∞)上是减函数
查看答案
manfen5.com 满分网函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点的个数为( )
A.1
B.2
C.3
D.4
查看答案
已知M和N分别是四面体OABC的边OA,BC的中点,且manfen5.com 满分网,若manfen5.com 满分网=a,manfen5.com 满分网=b,manfen5.com 满分网=c,则manfen5.com 满分网用a,b,c表示为( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知函数f′(x)是函数f(x)的导函数,g′(x)是函数g(x)的导函数,manfen5.com 满分网,g(x)=bx2-b2x,对于任意的a,b∈R,f′(a)与g′(a)的大小关系( )
A.f′(a)=g′(a)
B.f′(a)<g′(a)
C.f′(a)>g′(a)
D.不能确定
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.