满分5 > 高中数学试题 >

围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修)...

围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:米).
(1)将修建围墙的总费用y表示成x的函数;
(2)当x为何值时,修建此矩形场地围墙的总费用最小?并求出最小总费用.

manfen5.com 满分网
(1)设矩形的另一边长为am,则根据围建的矩形场地的面积为360m2,易得,此时再根据旧墙的维修费用为45元/m,新墙的造价为180元/m,我们即可得到修建围墙的总费用y表示成x的函数的解析式; (2)根据(1)中所得函数的解析式,利用基本不等式,我们易求出修建此矩形场地围墙的总费用最小值,及相应的x值. 【解析】 (Ⅰ)设矩形的另一边长为am, 则y=45x+180(x-2)+180•2a=225x+360a-360. 由已知ax=360,得, 所以. (II)因为x>0,所以, 所以,当且仅当时,等号成立. 即当x=24m时,修建围墙的总费用最小,最小总费用是10440元.
复制答案
考点分析:
相关试题推荐
如图,在四棱锥S-ABCD中,底面ABCD是棱形,SA⊥平面ABCD,M,N分别为SA,CD的中点.
(1)证明:直线MN∥平面SBC;
(2)证明:平面SBD⊥平面SAC;
(3)当SA=AD,且∠ABC=60°时,求直线MN与平面ABCD所成角的大小.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,锐角α和钝角β的终边分别与单位圆交于A,B两点.
(1)如果A,B两点的纵坐标分别为manfen5.com 满分网manfen5.com 满分网,求cosα和sinβ的值;
(2)在(1)的条件下,求cos(β-α)的值;
(3)已知点Cmanfen5.com 满分网,求函数manfen5.com 满分网的值域.

manfen5.com 满分网 查看答案
设[x]表示不超过实数x的最大整数,如[0.3]=0,[-0.4]=-1.则在坐标平面内满足方程[x]2+[y]2=25的点(x,y)所构成的图形的面积为    查看答案
若满足x2+y2+2y=0的实数x,y,使不等式x+y+m≥0恒成立,则实数m的取值范围是    查看答案
若曲线y=g(x)在点(l,g(l))处的切线方程为y=2x+1,则曲线f(x)=g(x)+lnx在点(l,g(l))处切线的斜率为     ,该切线方程为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.