满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且PA=P...

如图,在四棱锥P-ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且PA=PD=manfen5.com 满分网AD,若E、F分别为PC、BD的中点.
(Ⅰ) 求证:EF∥平面PAD;
(Ⅱ) 求证:EF⊥平面PDC.

manfen5.com 满分网
对于(Ⅰ),要证EF∥平面PAD,只需证明EF平行于平面PAD内的一条直线即可,而E、F分别为PC、BD的中点,所以连接AC,EF为中位线,从而得证; 对于(Ⅱ)要证明EF⊥平面PDC,由第一问的结论,EF∥PA,只需证PA⊥平面PDC即可,已知PA=PD=AD,可得PA⊥PD,只需再证明PA⊥CD,而这需要再证明CD⊥平面PAD, 由于ABCD是正方形,面PAD⊥底面ABCD,由面面垂直的性质可以证明,从而得证. 证明:(Ⅰ)连接AC,则F是AC的中点,在△CPA中,EF∥PA(3分) 且PA⊂平面PAD,EF⊊平面PAD, ∴EF∥平面PAD(6分) (Ⅱ)因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD, 又CD⊥AD,所以CD⊥平面PAD, ∴CD⊥PA(9分) 又PA=PD=AD, 所以△PAD是等腰直角三角形,且∠APD=,即PA⊥PD(12分) 而CD∩PD=D, ∴PA⊥平面PDC,又EF∥PA,所以EF⊥平面PDC(14分)
复制答案
考点分析:
相关试题推荐
已知等差数列{an}的前n项和为Sn=pn2-2n+q(p,q∈R),n∈N+
(Ⅰ)求的q值;
(Ⅱ)若a1与a5的等差中项为18,bn满足an=2log2bn,求数列{bn}的前n和Tn
查看答案
已知函数manfen5.com 满分网(a>1),求证方程f(x)=0没有负数根.
查看答案
已知二次函数y=f(x)(x∈R)的图象过点(0,-3),且f(x)>0的解集(1,3).
(1)求f(x)的解析式;
(2)求函数manfen5.com 满分网的最值.
查看答案
①函数y=sin4x-cos4x的最小正周期是π;
②已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是manfen5.com 满分网=-3
③若α内存在不共线三点到β的距离相等,则平面α∥平面β.其中正确结论的序号为    .(把你认为正确的命题序号都填上) 查看答案
已知点F、A分别为双曲线C:manfen5.com 满分网(a>0,b>0)的左焦点、右顶点,点B(0,-b)满足manfen5.com 满分网,则双曲线的离心率为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.