满分5 > 高中数学试题 >

某电脑公司有6名产品推销员,其工作年限与年推销金额的数据如下表: 推销员编号 1...

某电脑公司有6名产品推销员,其工作年限与年推销金额的数据如下表:
推销员编号12345
工作年限x/年35679
推销金额y/万元23345
(1)以工作年限为自变量x,推销金额为因变量y,作出散点图;
(2)求年推销金额y关于工作年限x的线性回归方程;
(3)若第6名推销员的工作年限为11年,试估计他的年推销金额.
(1)根据表中所给的5组数据,写出5个有序数对,画出平面直角坐标系,在坐标系中描出5个点,就是我们要求的散点图. (2)首先求出x,y的平均数,利用最小二乘法做出b的值,再利用样本中心点满足线性回归方程和前面做出的横标和纵标的平均值,求出a的值,写出线性回归方程. (3)第6名推销员的工作年限为11年,即当x=11时,把自变量的值代入线性回归方程,得到y的预报值,即估计出第6名推销员的年推销金额为5.9万元. 【解析】 (1)依题意,画出散点图如图所示, (2)从散点图可以看出,这些点大致在一条直线附近, 设所求的线性回归方程为. 则, ∴年推销金额y关于工作年限x的线性回归方程为=0.5x+0.4. (3)由(2)可知,当x=11时,=0.5x+0.4=0.5×11+0.4=5.9(万元). ∴可以估计第6名推销员的年推销金额为5.9万元.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在正方体ABCD-A1B1C1D1中,M、N、G分别是A1A,D1C,AD的中点.求证:
(1)MN∥平面ABCD;
(2)MN⊥平面B1BG.
查看答案
已知向量manfen5.com 满分网manfen5.com 满分网,x∈R,设manfen5.com 满分网
(1)求函数f(x)的最小正周期.
(2)若manfen5.com 满分网,且manfen5.com 满分网,求sin2x的值.
查看答案
已知a,b是两个互相垂直的单位向量,且c•a=1,c•b=1,manfen5.com 满分网,则对任意的正实数t,manfen5.com 满分网的最小值是    查看答案
数列{an}满足manfen5.com 满分网,若manfen5.com 满分网,则a2004的值为    查看答案
已知如下结论:“等边三角形内任意一点到各边的距离之和等于此三角形的高”,将此结论拓展到空间中的正四面体(棱长都相等的三棱锥),可得出的正确结论是:    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.