满分5 > 高中数学试题 >

已知函数图象上斜率为3的两条切线间的距离为,函数. (1)若函数g(x)在x=1...

已知函数manfen5.com 满分网图象上斜率为3的两条切线间的距离为manfen5.com 满分网,函数manfen5.com 满分网
(1)若函数g(x)在x=1处有极值,求g(x)的解析式;
(2)若函数g(x)在区间[-1,1]上为增函数,且b2-mb+4≥g(x)在x∈[-1,1]时恒成立,求实数m的取值范围.
(1)先求出斜率为3的切线方程,根据两条切线间的距离求出a值,再讨论满足g′(x)=0的点附近的导数的符号的变化情况,来确定极值,求出b即可. (2)欲使函数g(x)在区间[-1,1]上为增函数只需转化成g′(x)≥0在区间[-1,1]上恒成立,求出b的范围,根据g(x)在x∈[-1,1]是增函数知g(x)的最大值为g(1),只需使b2-mb+4≥g(1)恒成立即可. 【解析】 (1)∵, ∴由=3得x=±a, 即切点坐标为(a,a),(-a,-a) ∴切线方程为y-a=3(x-a),或y+a=3(x+a)(2分) 整理得3x-y-2a=0或3x-y+2a=0 ∴, 解得a=±1, ∴f(x)=x3. ∴g(x)=x3-3bx+3(4分) ∵g′(x)=3x2-3b,g(x)在x=1处有极值, ∴g′(1)=0, 即3×12-3b=0,解得b=1 ∴g(x)=x3-3x+3(6分) (2)∵函数g(x)在区间[-1,1]上为增函数, ∴g′(x)=3x2-3b≥0在区间[-1,1]上恒成立, ∴b≤0, 又∵b2-mb+4≥g(x)在区间[-1,1]上恒成立, ∴b2-mb+4≥g(1)(8分) 即b2-mb+4≥4-3b,若b=0,则不等式显然成立,若b≠0, 则m≥b+3在b∈(-∞,0)上恒成立 ∴m≥3. 故m的取值范围是[3,+∞)
复制答案
考点分析:
相关试题推荐
如图,在直角梯形ABCD中,AB∥CD,∠ABC=90°,CD=BC=1,AB=2,E为AB的中点,将△ADE沿DE翻折至△A′DE,使二面角A′-DE-B为直二面角.
(1)若F、G分别为A′D、EB的中点,求证:FG∥平面A′BC;
(2)求二面角D-A′B-C度数的余弦值

manfen5.com 满分网 查看答案
已知数列{an}满足,manfen5.com 满分网,n∈N×
(1)令bn=an+1-an,证明:{bn}是等比数列;
(2)求{an}的通项公式.
查看答案
已知函数f(x)=3x,且f-1(18)=a+2,g(x)=3ax-4x
(1)求a的值;
(2)求g(x)的表达式;
(3)当x∈[-1,1]时,g(x)的值域并判断g(x)的单调性.
查看答案
从兰州到天水的某三列火车正点到达的概率分别为0.8,0.85,0.9.求
(1)这三列火车恰有两列正点到达的概率;
(2)这三列火车至少有两列误点到达的概率.
查看答案
求值:
(1)求manfen5.com 满分网的值.
(2)已知manfen5.com 满分网,求manfen5.com 满分网的值
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.