满分5 > 高中数学试题 >

如图,四棱锥P-ABCD的底面是边长为1的正方形,侧棱PA⊥底面ABCD,且PA...

如图,四棱锥P-ABCD的底面是边长为1的正方形,侧棱PA⊥底面ABCD,且PA=2,E是PA的中点.
(Ⅰ)求四棱锥P-ABCD的体积;
(Ⅱ)求证:PC∥平面BDE.

manfen5.com 满分网
(Ⅰ)先根据PA⊥平面ABCD确定PA为四棱锥P-ABCD的高,进而根据棱锥的体积公式可求出四棱锥P-ABCD的体积. (Ⅱ)连接AC交BD于O,再连接OE,根据中位线定理可得到PC∥OE,再由线面平行的判定定理可证明PC∥OE,得证. 【解析】 (Ⅰ)∵PA⊥平面ABCD, ∴ = 即四棱锥P-ABCD的体积为. (Ⅱ)连接AC交BD于O,连接OE. ∵四边形ABCD是正方形, ∴O是AC的中点. 又∵E是PA的中点, ∴PC∥OE. ∵PC∉平面BDE,OE⊂平面BDE ∴PC∥平面BDE.
复制答案
考点分析:
相关试题推荐
已知数列{an},其前n项和为manfen5.com 满分网
(Ⅰ)求a1,a2
(Ⅱ)求数列{an}的通项公式,并证明数列{an}是等差数列;
(Ⅲ)如果数列{bn}满足an=log2bn,请证明数列{bn}是等比数列,并求其前n项和Tn
查看答案
已知函数f(x)=cos2x-sin2x+2sinxcosx.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)当manfen5.com 满分网时,求函数f(x)的最大值,并写出x相应的取值.
查看答案
给出下列四个命题:
①命题“∃x∈R,x2+1>3x”的否定形式是“∀x∈R,x2+1>3x”;
②在空间中,m、n是两条不重合的直线,α、β是两个不重合的平面,如果α⊥β,α∩β=n,m⊥n,那么m⊥β;
③将函数y=cos2x的图象向右平移manfen5.com 满分网个单位,得到函数manfen5.com 满分网的图象;
④命题“∃x∈R,x2+1>3x”的否命题是“∀x∈R,x2+1>3x”.
其中正确命题的序号是     查看答案
已知函数manfen5.com 满分网,对于数列{an}有an=f(an-1)(n∈N*,且n≥2),如果a1=1,那么a2=    ,an=    查看答案
二元一次不等式组manfen5.com 满分网所表示的平面区域的面积为    ,x+y的最大值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.