满分5 > 高中数学试题 >

已知函数f(x)=-+2ax2-3a2x+1,0<a<1. (Ⅰ)求函数f(x)...

已知函数f(x)=-manfen5.com 满分网+2ax2-3a2x+1,0<a<1.
(Ⅰ)求函数f(x)的极大值;
(Ⅱ)若x∈[1-a,1+a]时,恒有-a≤f′(x)≤a成立(其中f′(x)是函数f(x)的导函数),试确定实数a的取值范围.
(I)对函数求导,结合f′(x)>0,f′(x)<0,f′(x)=0可求解 (II)由题意可得-a≤-x2+4ax-3a2≤a在[1-a,1+a]恒成立,结合二次函数的对称轴x=2a与区间[1-a,1+a]与的位置分类讨论进行求解. 【解析】 (Ⅰ)f′(x)=-x2+4ax-3a2,且0<a<1,(1分) 当f′(x)>0时,得a<x<3a; 当f′(x)<0时,得x<a或x>3a; ∴f(x)的单调递增区间为(a,3a); f(x)的单调递减区间为(-∞,a)和(3a,+∞).(5分) 故当x=3a时,f(x)有极大值,其极大值为f(3a)=1.(6分) (Ⅱ)f′(x)=-x2+4ax-3a2=-(x-2a)2+a2, ⅰ)当2a≤1-a时,即时,f′(x)在区间[1-a,1+a]内单调递减. ∴[f′(x)]max=f′(1-a)=-8a2+6a-1,[f′(x)]min=f′(1+a)=2a-1. ∵-a≤f′(x)≤a,∴∴∴. 此时,.(9分) ⅱ)当2a>1-a,且2a<a+1时,即,[f′(x)]max=f′(2a)=a2. ∵-a≤f′(x)≤a,∴即 ∴∴. 此时,.(12分) ⅲ)当2a≥1+a时,得a≥1与已知0<a<1矛盾.(13分) 综上所述,实数a的取值范围为.(14分)
复制答案
考点分析:
相关试题推荐
将直径为d的圆木锯成长方体横梁,横截面为矩形,横梁的强度同它的断面高的平方与宽x的积成正比(强度系数为k,k>0).要将直径为d的圆木锯成强度最大的横梁,断面的宽x应是多少?

manfen5.com 满分网 查看答案
联合国准备举办一次有关全球气候变化的会议,分组研讨时某组有6名代表参加,A,B两名代表来自亚洲,C,D两名代表来自北美洲,E,F两名代表来自非洲,小组讨论后将随机选出两名代表发言.
(Ⅰ)代表A被选中的概率是多少?
(Ⅱ)选出的两名代表“恰有1名来自北美洲或2名都来自非洲”的概率是多少?
查看答案
如图,四棱锥P-ABCD的底面是边长为1的正方形,侧棱PA⊥底面ABCD,且PA=2,E是PA的中点.
(Ⅰ)求四棱锥P-ABCD的体积;
(Ⅱ)求证:PC∥平面BDE.

manfen5.com 满分网 查看答案
已知数列{an},其前n项和为manfen5.com 满分网
(Ⅰ)求a1,a2
(Ⅱ)求数列{an}的通项公式,并证明数列{an}是等差数列;
(Ⅲ)如果数列{bn}满足an=log2bn,请证明数列{bn}是等比数列,并求其前n项和Tn
查看答案
已知函数f(x)=cos2x-sin2x+2sinxcosx.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)当manfen5.com 满分网时,求函数f(x)的最大值,并写出x相应的取值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.