利用二项展开式的通项公式求出多项式的通项,令x的指数最大求出x的最高次项,令x的指数为3求出x3系数.
【解析】
(1-2x)6的展开式的通项为Tr+1=C6r(-2x)r
(1+x)4的展开式的通项为Tk+1=C4kxk
∴(1-2x)6(1+x)4的展开式的通项为(-2)rC6rC4kxk+r其中r=0,1,2,3,4,5,6;k=0,1,2,3,4
∴当r=6,k=4时(1-2x)6(1+x)4的展开式有x的最高次项为(-2)6x10=64x10
令r+k=3得,,,
∴(1-2x)6(1+x)4的展开式的x3系数为C6C43-2C61C42+4C62C41-8C63C4=12
故答案为64x10;12