满分5 > 高中数学试题 >

如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱S...

manfen5.com 满分网如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的manfen5.com 满分网倍,P为侧棱SD上的点.
(Ⅰ)求证:AC⊥SD;
(Ⅱ)若PD:SP=1:3,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由.
(1)由于SD在平面SBD上,证明AC⊥平面SBD,即AC⊥平面内任何线段,即得AC⊥SD. (2)取SD中点为N,因为PD:SP=1:3,则PN=PD,过N作PC的平行线与SC的交点即为E.在△BDN中知BN∥PO,又由于NE∥PC, 即可得到平面BEN∥平面PAC,使得BE∥平面PAC,进而求得SE:EC的值. 证明:(Ⅰ)连BD,设AC交BD于O,由题意SO⊥AC. 在正方形ABCD中,AC⊥BD,所以AC⊥平面SBD,得AC⊥SD. (Ⅱ)在棱SC上存在一点E,使BE∥平面PAC 取SD中点为N,因为PD:SP=1:3,则PN=PD, 过N作PC的平行线与SC的交点即为E.连BN. 在△BDN中知BN∥PO,又由于NE∥PC, 故平面BEN∥平面PAC,得BE∥平面PAC, 由于SN:NP=2:1,故SE:EC=2:1.
复制答案
考点分析:
相关试题推荐
已知向量manfen5.com 满分网,定义函数manfen5.com 满分网
(1)求f(x)的最小正周期和最大值及相应的x值;
(2)当manfen5.com 满分网时,求x的值.
查看答案
已知:函数manfen5.com 满分网(a>0).解不等式:manfen5.com 满分网
查看答案
某中学共有学生2000人,各年级男,女生人数如下表:
一年级二年级三年级
女生373xy
男生377370z
已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.
(1)现用分层抽样的方法在全校抽取48名学生,问应在高三年级抽取多少名?
(2)已知y≥245,z≥245,求高三年级中女生比男生多的概率.
查看答案
manfen5.com 满分网某地区为了解70-80岁的老人的日平均睡眠时间(单位:h),随机选择了50位老人进行调查,下表是这50位老人睡眠时间的频率分布表:
序号i分组
(睡眠时间)
组中值(Gi频数
(人数)
频率(Fi
1[4,5)4.560.12
2[5,6)5.5100.20
3[6,7)6.5200.40
4[7,8)7.5100.20
5[8,9]8.540.08
在上述统计数据的分析中一部分计算见算法流程图,则输出的S的值为    查看答案
平面内满足不等式组1≤x+y≤3,-1≤x-y≤1,x≥0,y≥0的所有点中,使目标函数z=5x+4y取得最大值的点的坐标是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.