满分5 > 高中数学试题 >

我校高一年级研究性学习小组共有9名学生,其中有3名男生和6名女生.在研究学习过程...

我校高一年级研究性学习小组共有9名学生,其中有3名男生和6名女生.在研究学习过程中,要进行两次汇报活动(即开题汇报和结题汇报),每次汇报都从这9名学生中随机选1人作为代表发言.设每人每次被选中与否均互不影响.
(Ⅰ)求两次汇报活动都由小组成员甲发言的概率;
(Ⅱ)设ξ为男生发言次数与女生发言次数之差的绝对值,求ξ的分布列和数学期望.
(1)由每人每次被选中与否均互不影响知本题是一个相互独立事件同时发生的概率.事件包含第一次汇报由甲发言且第二次回报也由乙发言,根据相互独立事件同时发生的概率得到结果. (2)由题意知ξ为男生发言次数与女生发言次数之差的绝对值,当都是男生或都是女生发言时,变量是2,当女生和男生各有一个人时,变量是0,根据变量的意义求出概率,写出分布列和期望. 【解析】 (Ⅰ)【解析】 由每人每次被选中与否均互不影响知本题是一个相互独立事件同时发生的概率. 记“2次汇报活动都是由小组成员甲发言”为事件A. 事件A包含第一次汇报由甲发言且第二次回报也由乙发言, 由题意得事件A的概率P(A)=, 即2次汇报活动都是由小组成员甲发言的概率为. (Ⅱ)【解析】 由题意,ξ的可能取值为2,0, ∵每次汇报时,男生被选为代表的概率为,女生被选为代表的概率为1-=. P(ξ=2)=+; P(ξ=0)=; ∴ξ的分布列为: ∴ξ的数学期望Eξ=.
复制答案
考点分析:
相关试题推荐
已知集合A={x|(x-2)[x-(3a+1)]<0},manfen5.com 满分网
(Ⅰ) 当a=2时,求A∩B;
(Ⅱ) 求使B⊆A的实数a的取值范围.
查看答案
在数列{an}中,都有an2-an-12=p(n≥2,n∈N*)(p为常数),则称{an}为“等方差数列”.下列是对“等方差数列”的判断:
(1)数列{(-1)n}是等方差数列;
(2)数列{an}是等方差数列,则数列{an2}也是等方差数列;
(3)若数列{an}既是等方差数列,又是等差数列,则该数列必为常数列;
(4)若数列{an}是等方差数列,则数列{akn}(k为常数,k∈N*)也是等方差数列.
则正确命题序号为    查看答案
定义在R上的函数f(x)满足:manfen5.com 满分网,当x∈(0,4)时,f(x)=x2-1,则f(2011)=    查看答案
设p:x2-x-20>0,q:manfen5.com 满分网<0,则p是q的    条件(填:充分不必要,必要不充分,充要条件,既不充分也不必要) 查看答案
manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.