满分5 > 高中数学试题 >

已知函数f(x)=-a2x2+ax+lnx(a∈R). (Ⅰ)我们称使f(x)=...

已知函数f(x)=-a2x2+ax+lnx(a∈R).
(Ⅰ)我们称使f(x)=0成立的x为函数的零点.证明:当a=1时,函数f(x)只有一个零点;
(Ⅱ)若函数f(x)在区间(1,+∞)上是减函数,求实数a的取值范围.
(I)欲证明当a=1时,函数f(x)只有一个零点,只须证明f(x)在(0,1)为增函数即可,最后只须证明f′(x)>0即可; (II)先求出原函数的导数,再根据函数f(x)在(1,+∞)上为单调函数,将原问题转化为f′(x)≤0在(1,+∞)恒成立问题,列出关于a的不等关系解之即得. (Ⅰ)证明:∵f(x)在(0,1)为增函数, 在(1,+∞)上为减函数.∴f(x)的最大值为f(1)=0, ∴f(x)在(0,+∞)只有一个零点.(4分) (Ⅱ)【解析】 ∵ ①当a=0时,不成立. ②当a>0时,f'(x)<0,得,∴. ③当a<0时,f'(x)<0,得,∴ 综上得:(12分)
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和Sn,对一切正整数n,点(n,Sn)都在函数f(x)=2x+2-4的图象上.
(I)求数列{an}的通项公式;
(Ⅱ)设bn=an•log2an,求数列{bn}的前n项和Tn
查看答案
如果甲、乙两个乒乓球选手进行比赛,而且他们的水平相当,规定“7局四胜”,即先赢四局者胜,若已知甲先赢了前两局.
求:(Ⅰ)乙取胜的概率;
(Ⅱ)比赛打满七局的概率;
(Ⅲ)设比赛局数为ξ,求ξ的分布列及Eξ.
查看答案
现有一批货物用轮船从上海洋山深水港运往青岛,已知该船航行的最大速度为35海里/小时,上海至青岛的航行距离约为500海里,每小时运输成本由燃料费用和其余费用组成、轮船每小时的燃料费用与轮船速度的平方成正比(比例系数为0.6),其余费用每小时960元,
(1)把全程运输费用y(元)表示为速度x(海里/小时)的函数;
(2)为了使全程运输成本最低,轮船应以多大速度行驶?
查看答案
已知函数f(x)=2sin(π-x)cosx.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在区间manfen5.com 满分网上的最大值和最小值.
查看答案
已知两个不相等的实数a、b满足以下关系式:manfen5.com 满分网manfen5.com 满分网
则连接A(a2,a)、B(b2,b)两点的直线与圆心在原点的单位圆的位置关系是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.