满分5 > 高中数学试题 >

数列{bn}(n∈N*)是递增的等比数列,且b1+b3=5,b1b3=4. (Ⅰ...

数列{bn}(n∈N*)是递增的等比数列,且b1+b3=5,b1b3=4.
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)若an=log2bn+3,求证数列{an}是等差数列;
(Ⅲ)若a1+a2+a3+…+am≤a40,求m的最大值.
(Ⅰ)由题设知b1,b3是方程x2-5x+4=0的两根,bn+1>bn,故b1=1,b3=4.b2=2.由此可知bn=b1qn-1=2n-1. (Ⅱ)由题设知an=log2bn+3=log22n-1+3=n-1+3=n+2,an+1-an=[(n+1)+2]-[n+2]=1,故数列{an}是首项为3,公差为1的等差数列. (Ⅲ)由题设知a1+a2+a3+…+am==≤a40=42,故m2+5m-84≤0,由此可知m的最大值是7. 【解析】 (Ⅰ)由,知b1,b3是方程x2-5x+4=0的两根, 注意到bn+1>bn,得b1=1,b3=4.(2分) ∴b22=b1b3=4,⇒b2=2. ∴b1=1,b2=2,b3=4 ∴等比数列.{bn}的公比为, ∴bn=b1qn-1=2n-1(4分) (Ⅱ)an=log2bn+3=log22n-1+3=n-1+3=n+2(5分) ∴an+1-an=[(n+1)+2]-[n+2]=1(7分) ∴数列{an}是首项为3,公差为1的等差数列.(8分) (Ⅲ)由(Ⅱ)知数列{an}是首项为3,公差为1的等差数列 ∴a1+a2+a3++am==(10分) 又a40=42 由a1+a2+a3++am≤a40,得 整理得m2+5m-84≤0,解得-12≤m≤7. ∴m的最大值是7.(12分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,PA=2,∠PDA=45°,点E、F分别为棱AB、PD的中点.
(Ⅰ)求证:AF∥平面PCE;
(Ⅱ)求证:平面PCE⊥平面PCD;
(Ⅲ)求三棱锥C-BEP的体积.
查看答案
设函数f(x)=manfen5.com 满分网manfen5.com 满分网,其中向量manfen5.com 满分网=(2cosx,1),manfen5.com 满分网=(cosx,manfen5.com 满分网sin2x+m)
(Ⅰ)当m=-1时,求函数f(x)的最小值,并求此时x的值;
(Ⅱ)当manfen5.com 满分网时,-4<f(x)<4恒成立,求实数m的取值范围.
查看答案
袋子中有质地、大小完全相同的4个球,编号分别为1,2,3,4.甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,若两个编号的和为奇数算甲赢,否则算乙赢.记基本事件为(x,y),其中x、y分别为甲、乙摸到的球的编号.
(Ⅰ)列举出所有的基本事件,并求甲赢且编号的和为5的事件发生的概率;
(Ⅱ)比较甲胜的概率与乙胜的概率,并说明这种游戏规则是否公平.
查看答案
若数列{an}的通项公式manfen5.com 满分网,记f(n)=(1-a1)(1-a2)…(1-an),试通过计算f(1),f(2),f(3)的值,推测出f(n)=    查看答案
如图,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆数为96颗,以此实验数据为依据可以估计出椭圆的面积约为    
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.