满分5 > 高中数学试题 >

设函数, (1)对于任意实数x,f'(x)≥m恒成立,求m的最大值; (2)若方...

设函数manfen5.com 满分网
(1)对于任意实数x,f'(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且仅有一个实根,求a的取值范围.
(1)先求函数f(x)的导数,然后求出f'(x)的最小值,使f'(x)min≥m成立即可. (2)若欲使方程f(x)=0有且仅有一个实根,只需求出函数的极大值小于零,或求出函数的极小值大于零即可. 【解析】 (1)f′(x)=3x2-9x+6=3(x-1)(x-2), 因为x∈(-∞,+∞),f′(x)≥m, 即3x2-9x+(6-m)≥0恒成立, 所以△=81-12(6-m)≤0, 得,即m的最大值为 (2)因为当x<1时,f′(x)>0; 当1<x<2时,f′(x)<0;当x>2时,f′(x)>0; 所以当x=1时,f(x)取极大值; 当x=2时,f(x)取极小值f(2)=2-a; 故当f(2)>0或f(1)<0时, 方程f(x)=0仅有一个实根、解得a<2或
复制答案
考点分析:
相关试题推荐
某厂生产产品x件的总成本c(x)=1200+manfen5.com 满分网x3(万元),已知产品单价P(万元)与产品件数x满足:p2=manfen5.com 满分网,生产100件这样的产品单价为50万元.
(1)设产量为x件时,总利润为L(x)(万元),求L(x)的解析式;
(2)产量x定为多少件时总利润L(x)(万元)最大?并求最大值(精确到1万元).
查看答案
已知函数f(x)=ax3+(a-1)x2+48(a-2)x+b的图象关于原点成中心对称.
(1)求a,b的值;
(2)求f(x)的单调区间及极值.
查看答案
求由曲线y=x2,y=x,及y=2x围成的平面图形面积.
查看答案
manfen5.com 满分网已知函数f(x)=x3+ax2+bx(a,b∈R)的图象如图所示,它与直线y=0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为manfen5.com 满分网,则a的值为    查看答案
已知函数f(x)=ax3+3x2-6ax+b在x=2处取得极值9,则a+2b=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.