满分5 > 高中数学试题 >

设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值. (Ⅰ...

设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.
(Ⅰ)求a、b的值;
(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.
(1)依题意有,f'(1)=0,f'(2)=0.求解即可. (2)若对任意的x∈[0,3],都有f(x)<c2成立⇔f(x)max<c2在区间[0,3]上成立,根据导数求出函数在[0,3]上的最大值,进一步求c的取值范围. 【解析】 (Ⅰ)f'(x)=6x2+6ax+3b, 因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0. 即 解得a=-3,b=4. (Ⅱ)由(Ⅰ)可知,f(x)=2x3-9x2+12x+8c,f'(x)=6x2-18x+12=6(x-1)(x-2). 当x∈(0,1)时,f'(x)>0; 当x∈(1,2)时,f'(x)<0; 当x∈(2,3)时,f'(x)>0. 所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c. 则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c. 因为对于任意的x∈[0,3],有f(x)<c2恒成立, 所以9+8c<c2, 解得c<-1或c>9, 因此c的取值范围为(-∞,-1)∪(9,+∞).
复制答案
考点分析:
相关试题推荐
将两块三角板按图甲方式拼好,其中∠B=∠D=90°,∠ACD=30°,∠ACB=45°,AC=2,现将三角板ACD沿AC折起,使D在平面ABC上的射影O恰好在AB上,如图乙.
(I)求证:BC⊥AD;
(II)求证:O为线段AB中点;
(III)求二面角D-AC-B的大小的正弦值.

manfen5.com 满分网 查看答案
公差不为0的等差数列{an}中,a4=10且a3,a6,a10成等比数列.
(I)求数列{an}的通项公式和它的前20项和S20
(II)求数列manfen5.com 满分网前n项的和Tn
查看答案
在△ABC中,a,b,c分别是A,B,C的对边,且满足(2a-c)cosB=bcosC.
(I)求角B的大小;(II)若manfen5.com 满分网
查看答案
不等式x2-x≤0的解集是不等式x2-4x+m≥0的解集的子集.则实数m的取值范围是    查看答案
已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出
①若m⊥α,m⊥β,则α∥β;
②若α⊥γ,β⊥γ,则α∥β;
③若m⊂α,n⊂β,m∥n,则α∥β;
④若m、n是异面直线,m⊂α,m∥β,n⊂β,n∥α,则α∥β
上面四个命题中,其中真命题有    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.