(Ⅰ)依题意得Sn+1=2Sn+3n,由此可知Sn+1-3n+1=2(Sn-3n).所以bn=Sn-3n=(a-3)2n-1,n∈N*.
(Ⅱ)由题设条件知Sn=3n+(a-3)2n-1,n∈N*,于是,an=Sn-Sn-1=,由此可以求得a的取值范围是[-9,+∞).
【解析】
(Ⅰ)依题意,Sn+1-Sn=an+1=Sn+3n,即Sn+1=2Sn+3n,
由此得Sn+1-3n+1=2Sn+3n-3n+1=2(Sn-3n).(4分)
因此,所求通项公式为bn=Sn-3n=(a-3)2n-1,n∈N*.①(6分)
(Ⅱ)由①知Sn=3n+(a-3)2n-1,n∈N*,
于是,当n≥2时,
an=Sn-Sn-1=3n+(a-3)×2n-1-3n-1-(a-3)×2n-2=2×3n-1+(a-3)2n-2,
an+1-an=4×3n-1+(a-3)2n-2=,
当n≥2时,⇔a≥-9.
又a2=a1+3>a1.
综上,所求的a的取值范围是[-9,+∞).(12分)