满分5 > 高中数学试题 >

设椭圆的左右焦点分别为F1、F2A是椭圆C上的一点,且,坐标原点O到直线AF1的...

设椭圆manfen5.com 满分网的左右焦点分别为F1、F2A是椭圆C上的一点,且manfen5.com 满分网,坐标原点O到直线AF1的距离为manfen5.com 满分网
(1)求椭圆C的方程;
(2)设Q是椭圆C上的一点,过点Q的直线l交x轴于点F(-1,0),交y轴于点M,若|MQ|=2|QF|,求直线l的斜率.
(1)题设知F1和F2的坐标,根据,推断有,设点A的坐标为根据原点O到直线AF1的距离求得a,进而求得b.答案可得. (2)设直线斜率为k,则直线l的方程为y=k(x+1),设Q(x1,y1),由于Q,F,三点共线,且|MQ|=|2QF|.进而可得(x1,y1-k)=±2(x1+1,y),求得x1和y1,代入椭圆方程即可求得k,进而得到直线斜率. 【解析】 (1)由题设知F1(-,0),F2(,0),其中a> 由于,则有,所以点A的坐标为(± 故AF1所在直线方程为y=±(),所以坐标原点O到直线AF1的距离为, 又|OF1|=,所以=|=,解得:a=2. ∴所求椭圆的方程为. (2)由题意可知直线l的斜率存在,设直线斜率为k,则直线l的方程为y=k(x+1),故M(0,k). 设Q(x1,y1),由于Q,F,三点共线,且|MQ|=|2QF|. 根据题意得(x1,y1-k)=±2(x1+1,y1),解得或 又Q在椭圆C上,故或, 解得k=0,k=±4,综上,直线的斜率为0或±4
复制答案
考点分析:
相关试题推荐
设函数manfen5.com 满分网
(1)求函数f(x)的单调区间、极值.
(2)若当x∈[a+1,a+2]时,恒有|f′(x)|≤a,试确定a的取值范围.
查看答案
如图,在边长为2的正方形ABCD中,点E是AB的中点,点F是BC的中点,将△AED,△CDF分别沿DE,DF折起,使A,C两点重合于A′.
manfen5.com 满分网
(1)求证:A′D⊥EF;
(2)求二面角A′-EF-D的正切值.
查看答案
甲、乙两名同学参加一项射击游戏,两人约定,其中任何一人每射击一次,击中目标得2分,未击中目标得0分.若甲、乙两名同学射击的命中率分别为manfen5.com 满分网和p,且甲、乙两人各射击一次所得分数之和为2的概率为manfen5.com 满分网,假设甲、乙两人射击互不影响
(1)求p的值;
(2)记甲、乙两人各射击一次所得分数之和为ξ,求ξ的分布列和数学期望.
查看答案
已知向量manfen5.com 满分网manfen5.com 满分网,函数manfen5.com 满分网manfen5.com 满分网
(1)求函数g(x)的最小正周期;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(c)=3,c=1,manfen5.com 满分网,且a>b,求a,b的值.
查看答案
某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有2次击中目标的概率为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.