满分5 > 高中数学试题 >

已知椭圆的一个顶点为A(0,-1),焦点在x轴上.若右焦点到直线的距离为3. (...

已知椭圆的一个顶点为A(0,-1),焦点在x轴上.若右焦点到直线manfen5.com 满分网的距离为3.
(1)求椭圆的方程;
(2)设椭圆与直线y=kx+m(k≠0)相交于不同的两点M、N.当|AM|=|AN|时,求m的取值范围.
(1)依题意可设椭圆方程为,由题设解得a2=3,故所求椭圆的方程为. (2)设P为弦MN的中点,由得(3k2+1)x2+6mkx+3(m2-1)=0,由于直线与椭圆有两个交点,∴△>0,即m2<3k2+1.由此可推导出m的取值范围. 【解析】 (1)依题意可设椭圆方程为, 则右焦点F()由题设 解得a2=3故所求椭圆的方程为; (2)设P为弦MN的中点,由 得(3k2+1)x2+6mkx+3(m2-1)=0 由于直线与椭圆有两个交点,∴△>0,即m2<3k2+1① ∴从而 ∴又|AM|=||AN|,∴AP⊥MN, 则即2m=3k2+1② 把②代入①得2m>m2解得0<m<2由②得解得. 故所求m的取范围是().
复制答案
考点分析:
相关试题推荐
已知数列{an}是等差数列,a2=6,a5=18;数列{bn}的前n项和是Tn,且Tn+manfen5.com 满分网bn=1.
(1)求数列{an}的通项公式;
(2)求证:数列{bn}是等比数列;
(3)记cn=an•bn,求{cn}的前n项和Sn
查看答案
如图,在直三棱柱ABC-A1B1C1中,AB=AC,点D在边BC上,AD⊥C1D.
(1)求证:AD⊥平面BCC1B1
(2)如果点E是B1C1的中点,求证:A1E∥平面ADC1

manfen5.com 满分网 查看答案
已知函数f(x)=x3+2bx2+cx-2的图象在与x轴交点处的切线方程是y=5x-10.
(1)求函数f(x)的解析式;
(2)设函数g(x)=f(x)+manfen5.com 满分网mx,若g(x)的极值存在,求实数m的取值范围以及函数g(x)取得极值时对应的自变量x的值.
查看答案
已知函数manfen5.com 满分网
(1)求函数f(x)的定义域和值域;
(2)求函数f(x)的单调递增区间.
查看答案
P是双曲线manfen5.com 满分网的右支上一动点,F是双曲线的右焦点,已知A(3,1),则|PA|+|PF|的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.