满分5 > 高中数学试题 >

如,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=...

如,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BCmanfen5.com 满分网,BEmanfen5.com 满分网
(Ⅰ)证明:C,D,F,E四点共面;
(Ⅱ)设AB=BC=BE,求二面角A-ED-B的大小.

manfen5.com 满分网
(Ⅰ)延长DC交AB的延长线于点G,延长FE交AB的延长线于G′,根据比例关系可证得G与G′重合,准确推理,得到直线CD、EF相交于点G,即C,D,F,E四点共面. (Ⅱ)取AE中点M,作MN⊥DE,垂足为N,连接BN,由三垂线定理知BN⊥ED,根据二面角平面角的定义可知∠BMN为二面角A-ED-B的平面角,在三角形BMN中求出此角即可. 【解析】 (Ⅰ)延长DC交AB的延长线于点G,由BC得 延长FE交AB的延长线于G′ 同理可得 故,即G与G′重合 因此直线CD、EF相交于点G,即C,D,F,E四点共面. (Ⅱ)设AB=1,则BC=BE=1,AD=2 取AE中点M,则BM⊥AE,又由已知得,AD⊥平面ABEF 故AD⊥BM,BM与平面ADE内两相交直线AD、AE都垂直. 所以BM⊥平面ADE,作MN⊥DE,垂足为N,连接BN 由三垂线定理知BN⊥ED,∠BMN为二面角A-ED-B的平面角. 故 所以二面角A-ED-B的大小
复制答案
考点分析:
相关试题推荐
已知:函数manfen5.com 满分网(a、b、c是常数)是奇函数,且满足manfen5.com 满分网
(Ⅰ)求a、b、c的值;
(Ⅱ)试判断函数f(x)在区间manfen5.com 满分网上的单调性并证明.
查看答案
已知数列{an}中,a1=1,当n≥2时,其前n项和sn满足manfen5.com 满分网
(1)证明:数列manfen5.com 满分网为等差数列,并求sn表达式;
(2)设manfen5.com 满分网,求{bn}的前n项和Tn
查看答案
已知函数manfen5.com 满分网
(1)求函数f(x)的单调增区间;
(2)已知f(α)=3,且α∈(0,π),求α的值.
查看答案
函数f(x)=x3+ax2+bx+a2,在x=1时有极值10,那么a,b的值分别为    查看答案
复数manfen5.com 满分网在复平面内,z所对应的点在第    象限. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.